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ABSTRACT. In this paper, we consider a class of nonsmooth composite optimization problems, where the
objective is formed as the sum of a differentiable convex function and a simple nonsmooth convex part. By
using the inertial technique, we introduce two improved inertial-type extragradient methods for the prob-
lem under consideration. The first one is the doubly-inertial proximal extragradient algorithm (DEGA),
which employs two inertial steps to generate intermediate iterates for speeding up the performance of
the extragradient method. The second algorithm is called overlapped-inertial proximal extragradient algo-
rithm (OEGA), which utilizes the first inertial step to construct a new inertial step so that more historical
information could be used in the final update. With appropriate settings on the inertial parameters, our
algorithms can recover the benchmark extragradient method. Theoretically, both DEGA and OEGA are
globally convergent under some standard assumptions. Moreover, their effectiveness is verified through
some numerical experiments on the Dantzig selector and Lasso problems.
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1. INTRODUCTION

In this paper, we are interested in a nonsmooth composite optimization problem, which is to mini-
mize the sum of two convex functions, i.e.,
min {F(x) := f(z) + g(x)}, (1.1)
rzeR?
where both f(-) : R — Rand g(-) : R” — R U {400} are assumed to be closed proper convex
functions, and f(-) is further supposed to be differentiable with an L-Lipschitz continuous gradient,
while g(-) is allowed to be a nonsmooth function (Noting that g(-) is extended-valued, it is beneficial
for encoding constraints on the variable x). Obviously, the model (1.1) is rich enough to recover generic
classes of (non)smooth convex optimization problems arising in the areas of compressed sensing, signal
and image processing, machine learning, statistical inference, and so on. Here, we refer the reader to
monographs (e.g., see [8, 21, 32, 35]) for some specific applications of (1.1).

Considering the split nature of (1.1) and the differentiability of f(-), one of the most popular ap-
proaches to finding a solution of (1.1) is the proximal gradient method (PGM, see [4, 5, 33]), which
iteratively linearizes the smooth part f(-) at xj, so that the update of x;,1 boils down to evaluating a
proximal operator, i.e.,

Tk+1 = ProXg, (:Ek - Svf(l'k)) ) (1.2)
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where s > ( is the step size, V f () is the gradient of f(-) at 7%, and prox,(-) is the proximal operator
of g defined by

: 1 2
prox;,(-) := arg min {g(x) + 2—tHx —l } , Vt>0. (1.3)

In the optimization literature, the method (1.2) is also known as the forward-backward splitting algo-
rithm [12, 13] tailored for maximal monotone inclusions. Moreover, it can also reduce to the classical
projected gradient method [6], when ¢(-) is specified as an indicator function associated with one con-
vex subset of R™. Due to its simple iterative scheme and the lowest computational cost, the PGM
(1.2) received much attention and fruitful applications in machine learning and data science, e.g., see
[4, 21, 33, 35] and references therein.

Revisiting the iterative scheme (1.2), we can roughly conclude from earlier studies on this method
that there are two bottlenecks motivating researchers to develop more efficient variants. The first one
is the comparatively strong requirements on the objective function. As shown in [16, 23], the projected
gradient method (a special case of (1.2)) requires s € (0,2n/L?) to guarantee its global convergence,
where 1 and L are strongly monotone and Lipschitz continuous moduli of V f(-), respectively. How-
ever, the strongly monotone modulus 7 is difficult, even not impossible to evaluate for many real-world
problems. Moreover, such a strong condition does not meet in many cases. As a result, it heavily lim-
its the practicality in applications. To address this issue, Korpelevich [22] judiciously introduced the
so-called extragradient method, which takes two sequential gradient steps at each iteration, thereby
making it twice as expensive as the standard projected/proximal gradient method. However, the good
news is that the extragradient method enjoys promising convergence properties under only the mono-
tonicity and the Lipschitz continuity of V f(-) [26]. Moreover, extragradient methods run much faster
than the original projected gradient method in terms of iterations. Along this direction, some improved
variants were introduced in the variational inequalities literature, e.g., see [10, 17, 18, 36, 40, 41]. Here,
we refer the reader to a most recent survey [37] and references therein.

The second bottleneck of (1.2) is its low convergence behavior in practice. The main reason is related
to the aforementioned step size s, which heavily depends on the Lipschitz continuous modulus L of
V f(-). Even when L could be easily estimated (e.g., quadratic functions), such a modulus is possibly
a large number, thereby resulting a very small step size. Theoretically, it has been documented in [4]
that (1.2) has an O(1/k) convergence rate. Therefore, to make an acceleration on (1.2), a simple yet
powerful technique is imposing an inertial step to generate an intermediate point for the final update.
Such an acceleration technique can be traced back to the seminal work [27] on solving unconstrained
minimization with a strongly convex objective. In 2009, Beck and Teboulle [4] further weakened this
strong condition and proposed an accelerated PGM enjoying an O(1/k?) convergence rate for convex
composite problem (1.1). More recently, Ochs et al. [29, 30] studied inertial proximal gradient methods
for strongly convex and nonconvex (1.1). Their general iterative scheme reads as

{ Yk = ok + o (T — Tp—1), (1.4a)
Lk+1 = Prox,, (yr — sV f(zr)), (1.4b)

where oy, € [0,1) is an inertial parameter. Clearly, the situation a = 0 corresponds to the original
PGM (1.2). Without the convexity, the O(1/k?) convergence rate of (1.4) cannot be established for
(1.1). However, such an inertial step (i.e., (1.4a)) still greatly speeds up the performance of PGM (1.2).
Therefore, in recent years, the inertial technique has been widely used for accelerating many first-order
methods, e.g., see [2, 7, 11, 15, 20, 25, 34, 38, 39, 42], to name just a few.

Recently, Nguyen et al. [28] extended the extragradient method [22] to solve (1.1). The iterative
scheme takes the form of

{ Yk ‘= ProXg, (:L‘k - SVf(ZEk)) ) (1-53)
Tk+1 = Prox,, (ﬂfk - va(yk)) ) (1.5b)
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where s and 7 are two positive step sizes. As mentioned above, this method (1.5) possesses nice conver-
gence properties, while it must recall twice evaluations of the proximal operator prox,,(-) and gradient
V f(-), which usually increase the computational burden. Therefore, a natural way of saving the com-
putational cost caused by the extra step (i.e., (1.5a)) is to reduce the number of iterations as many as
possible. In this paper, inspired by the efficiency of inertial technique, we introduce two inertial-type
proximal extragradient methods to enhance the performance of (1.5). Specifically, we first propose a
Doubly-inertial proximal ExtraGradient Algorithm (DEGA), which has two inertial steps generating
intermediate iterates. With appropriate settings on the doubly-inertial parameters, our new algorithm
recovers the original iterative scheme (1.5). Then, we introduce an Overlapped inertial proximal Ex-
traGradient Algorithm (OEGA), which also has two inertial steps, but its second one is constructed by
the first inertial step. To some extent, the OEGA can absorb more historical information to update the
next iterate, which is possibly of benefit for improving the performance of the OEGA. Theoretically,
we prove that both proposed algorithms (i.e., DEGA and OEGA) are globally convergent. Finally, some
numerical experiments on the Dantzig selector and Lasso problems indicate that our DEGA and OEGA
perform well in practice.

The rest of this paper is organized as follows: In Section 2, we recall some basic notations, definitions,
and lemmas. In Section 3, we first present the details of the DEGA. Then, we give its global convergence
analysis. In Section 4, we introduce the OEGA and analyze its global convergence. In Section 5, some
numerical experiments are conducted to verify the reliability of our proposed algorithms. Finally, we
complete this paper with drawing some conclusions in Section 6.

2. PRELIMINARIES

In this section, we recall some basic notations, definitions, properties and lemmas that will be used
in this paper.

Let R™ be an n-dimensional Euclidean space endowed with the standard inner product of vectors,
ie, (x,y) = x "y for any z,y € R", where the superscript | represents the transpose of vectors and
matrices. Throughout this paper, we let ||| = /(z, z) be the standard Euclidean norm. Moreover, we
denote || - |1 and || - ||oo the standard ¢; and /., norms of vectors, respectively. For an extended real-
valued function f(-) : R — RU{+oc}, the domain of f is defined by dom (f) := {x € R" | f(x) <
o0}. The distance from a point € R"™ to a nonempty convex set 2 C R" is defined by

dist(z, Q) == inf{|lz — 2| : z € Q}.

Definition 2.1. Let g(-) : R™ — R be a lower semicontinuous convex function. The subdifferential of
g is denoted by dg(-) : R® — 2R" which is given by

9g(x) :={€ e R"[g(y) = g(x) + {y —2,&), Yy € R" }.
Then, £ € dg(x) is called a subgradient of g at point z.

Definition 2.2. Let f(-) : R"™ — R be a convex and differentiable function. We say that the gradient
V f(-) of f is L-Lipschitz continuous if

IVf(@) =Vl < Lz -yl Ve,y € R™.
With the above L-Lipschitz continuity, we recall the well-known decent lemma.

Lemma 2.3 (descent lemma [6]). Let f(-) : R™ — R be a continuously differentiable function, and let
its gradient V f be L-Lipschitz continuous. Then, we have

F() < 5(@) + (VS (@y — )+ 5 ly— 2l Y,y € dom (f).

Recalling the definition of proximal operator in (1.3), we have the following fundamental inequality.
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Lemma 2.4 ([24, Proposition 5.b]). Let g be a proper closed and convex function. Then, foranyx,y € R",
the proximal operator prox,(-) is nonexpansive, ie.,

[prox,(z) — prox,(y)|| < [z =yl

Lemma 2.5 ([28]). Letu € R™, t > 0, and v := prox,,(u). Then, for any w € R", we have

1
9(w) = g(v) = o ([u = vl* + o = v[* = fJu = w[*).

Below, we recall three useful lemmas that will play important roles in the convergence analysis of
this paper.

Lemma 2.6 ([3]). Foranyx,y € R", we have the following identities:

O o= vl = ol + o) ~2@9). 2
@. 2 + (1 =Myl =iz + (= NIyl =41 =Dl = yll>, ¥y € R

Lemma 2.7 ([1]). Let {¢r}, {0r} and {a} be the sequences in [0, +00) such that ¢p1 < ¢dr + g (Pr —
k—1) + Ok, Vk € N, 302, 0k, < 400, and there exists a real number & satisfying 0 < o, < @ <
1, Vk € N. Then, the following properties hold

(i) >opey [Prr1 — O], < +oo, where [a] . = max{a, 0} for anya € R.

(ii). there exists ¢* € [0, 400) such that limg_,o ¢ = P*.

Lemma 2.8 ([31]). Let {xy} be a sequence such that there exists a nonempty set ) C R" verifying:

(i). For everyz* € Q, limy_, ||z — x*|| exists.
(ii). If{zy,} converges tox* € R™ for a subsequence kj — oo, then x* € (0.

Then, there exists x* € ) such that the sequence {x}.} converges to z* in R".

3. DoUBLY-INERTIAL PROXIMAL EXTRAGRADIENT ALGORITHM

In the section, we first present the new inertial-type extragradient algorithm for (1.1), which is named
as doubly-inertial proximal extragradient algorithm (DEGA). Then, we establish its global convergence.

3.1. Algorithmic framework. As mentioned in Section 1, the ideas of extragradient method (i.e.,
one more proximal step (1.5a)) and inertial step (i.e., (1.4a)) are able to improve the performance of
PGM (1.2). Taking a look at (1.5), we can see that the evaluation on gy comes from the information
generated by zj, while the update of xj 1 is due to the information x, and V f(yi). Therefore, we
are motivated to employ different iterates instead of the iterate xj in (1.5). Specifically, we construct
two different inertial steps to generate intermediate iterates for updating y; and x4 in (1.5a) and
(1.5b), respectively. So, we call our algorithm Doubly-inertial ExtraGradient Algorithm (DEGA), which
is shown in Algorithm 1.

Algorithm 1 Doubly-inertial proximal extragradient algorithm (DEGA).

1: Choose initial points zp and z; € R™. Select ayg, Bo, s, satisfying Assumptions 1-2.
2: fork=1,2,--- do

3:
wy = o) + ap(x) — Tp—1), (3.1a)
vk = Tk + Be(Tk — Th-1), (3.1b)
Yk = proxg,(wy, — sV f(vg)), (3.1¢)
Tr+1 = ProxX,,(wr — nV f(yk)). (3.1d)

4: end for
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Remark 3.1. Obviously, when o, = S = 0, s = 7, and g(z) is specifying as an indicator function,
our algorithm immediately reduces to the original extragradient method [22]. When g(x) is a general
nonsmooth convex function, Algorithm 1 corresponds to the extended extragradient method in [28].
When o) = [ # 0, we can obtain one-step inertial extragradient method. To a certain extend,
Algorithm 1 is more flexible due to the four parameters oy, B, s and 1. We shall mention that both s and
7 could be selected via some dynamical (self-adaptive or line-search) strategies (e.g., see [4, 17, 40, 41]).
Here, we assume s and ) are constants for simplicity. Indeed, we will show in Section 5 that Algorithm 1
without those dynamical strategies still works better than the original extragradient method and PGM.

3.2. Convergence analysis. In this subsection, we show that Algorithm 1 for (1.1) is globally conver-
gent. To begin our analysis, we first recall a pivot lemma that has been established in [28], and we skip
its detailed proof here for the conciseness of this paper.

Lemma 3.2. Letz € R",y € R", t > 0, and p = prox,,(z — tVf(y)), where f and g are given in
(1.1). Then, for any z € R", we have

L 2
EHP— yll%,

1
F(2) = F(p) 2 o (le = pI* + Iz = plI* = 2 = 2[I*) -

where L is the Lipschitz continuous constant of V f (+).
Below, we first make some assumptions for the coming global convergence of Algorithm 1.
Assumption 1. The step sizes s and ) satisfy 0 < s < min (n,1/L) and 2Ly < 1 — L?s%

Assumption 2. The inertial sequence {ay,} is non-decreasing and {f}} satisfy 0 < ag, < & < 1 and
0 < 8 < Br < 1. Moreover, for some 6 > 0 and & > 0, we assume these parameters satisfying

2
_ Ls(a — _ _
@ +93) a(1+a)+2Ln<i(aLﬁ)> +vad 4+ | < v,
— LS
where
—1-9L L5y (3.2)
vi= Ul ) .

For the inequality in Assumption 2, we present a lemma to show the positiveness of v for the ratio-
nality of this assumption.

Lemma 3.3. Suppose that Assumption 1 holds. We then have v defined in (3.2) is positive.

Proof. Firstly, we rewrite (3.2) that

1 s\ 2

n(1 — Ls)? — 2Ln* — 2Ls*(1 — Ls)? +4Lsn(1 — Ls)
= . (3.3)
n(l — Ls)?

Since 0 < s < min (77, %), it is obvious that verifying the positiveness of v amounts to checking that
the numerator of (3.3) is positive, i.e.,

n(1 — Ls)? — 2Ln? — 2Ls*(1 — Ls)? + 4Lsn(1 — Ls) > 0,
where the left-hand term is a quadratic function with respect to 7). Therefore, we need to prove that

14 3Ls++/(1+3Ls)? — 16L2s2
4L ’
1+3Ls — /(1 +3Ls)2 — 16L2s2
4L ‘

n < (1— Ls)

n > (1— Ls)
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Apparently, if 0 < b < a then a — b < v/a? — b?. Thus, we derive

1—Ls=(1+3Ls)—4Ls < /(1 +3Ls)? — 16L2s2. (3.4)

It follows from (3.4) that

1+43Ls — +/(1+3Ls)? — 16L2s>

_ < (1 —
(1—Ls) il <(1—-1Ls)s<n
and
1+3Ls++/(1+3Ls)2—16L2s2 _ (1 — Ls)(1 + Ls)
_ > .
(1= 1Ls) AL = 2L -
We complete the proof. g

Now, we show the difference between y; and x| generated by the two proximal steps (i.e., (3.1¢c)
and (3.1d)) satisfying an inequality.

Lemma 3.4. Let {wy}, {vr},{zr}, {yr} be sequences generated by Algorithm 1. Suppose that Assump-
tion 1 holds. Then, for any k € N, it holds that

Ls
1—Ls

Ls
1—Ls

S
T— (1 -2y ) lwn = el + —25— g — vl (33)

Proof. First, we denote
Zp 41 = Prox,,(wy, — sV f(yr))-

Since V f is L-Lipschitz continuous, it follows from the nonexpansiveness of prox;,(-) (see Lemma
2.4) that

gk — 2i1 |l < [Jlwp — sV f(vr) — (wp — sV f(yr))]|
< Ls||yr — v l|-

Consequently, we have

v — wil| + [lwk — 2e11l] = llok — 21|
> vk — yrll — llye — zr41 |l
> (1= Ls)|lyx — vill- (3.6)

It follows from the optimality condition of (3.1d) that

S T = V() € 0g(kn),
which, together with the convexity of g, implies
(ST ) = 1) < gen) - 9o 67
Similarly, by invoking the definition of zj at the beginning of this proof, we have
(M T = 21 ) < o) - gCaas) 69

Adding (3.7) and (3.8) immediately leads to

<wk — g1 Wk~ Tt

. W — Zhg1 — (Wg — $k+1)> <0. (3.9
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Reorganizing (3.9), it follows from the Cauchy-Schwarz inequality that

|wi, — 2412 n Jwe — zpq1]?
s 7

-+ - WE — 2 , W — &
n k k+1 k k+1

+ w z w €T s
=\ " k k+1 k k+1

which can be rewritten as
(lwr = 2e41ll = llwk — Trga ) (llwk — zkyll — %Hwk - ﬂfk+1||) <0, (3.10)
which means
lwe = 2e1]| < lwe — 4|l and [Jwg — 2541 ]| = %Hwk — Th41]|

or

S
lwk = 2kl = [lwe — Tl and fJwg — 24| < Ellﬂ% — Thyl]-

Invoking the requirement % < 1 on the above two cases, inequality (3.10) implies that
s
;Hwk — Tl < flwe — 2kl < llwp — Tpgal]- (3.11)

Recalling the definitions of y;, and x4 in (3.1c) and (3.1d), respectively, we can similarly obtain

<wks_yk = Vf(vk), g1 — yk> < g(xg+1) — 9(yk) (3.12)

and
(I )= e ) < aon) — glonin) .13

As a consequence, summing (3.12) and (3.13) yields

1 1 1
S — ol + (3 = 5 ) Gowes = o n = ) < G — 0 97 08) — 9 0).

which, together with the Cauchy-Schwarz inequality, implies that

1 1 1
Slowe =l < (5 = 2 lowen = mlllus — sl + o = wllIV ) = V101,

Using the Lipschitz continuity of V f in the above inequality, we immediately have
5
s = ol < (1= 2) on = ol + Lol — . (5.14)

Combining (3.6), (3.11) and (3.14), we conclude

Ls
1—Ls

Ls
1—Ls

S
st — vall < (1—n+ >||wk—xk+1r|+ T

The proof is complete. g

Hereafter, we show that the distance between x1 and x* satisfies an inequality, where xy1 is
given by (3.1d) and x* is a solution of (1.1).
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Lemma 3.5. Let {wy}, {vr}, {xx}, {yr} be sequences generated by Algorithm 1 and x* be a solution of
(1.1). Suppose that Assumption 1 holds. Then, we have

2
" « s Ls
laar — 272 <llwg — ]2 = (1 ~ o1y (1 -2y ) ) g — i

1—Ls

Ls 2
+2Ln (1 - Ls> l|wp — vg ]| (3.15)

Proof. Let x* be a solution of (1.1). First, an application of Lemma 3.2 by setting * = wg, ¥ = Yk,
P = Tpa1, 2 = x¥, and t = n immediately yields

1 L
o7 (lwx = 2 ® + s = 217 = llwow = 27[%) = Sllzesn = wel® <0,

which is due to the fact F'(x*) — F(xx4+1) < 0, and can be further rewritten as
lzksr — 2|1 < Hhwy — 2|1 = llw — 2pal* + Logllepey — yell. (3.16)
By (3.5), an application of the fact that (a + b)? < 2a? + 2b2 for all a, b € R to (3.16) yields

2
" « s Ls
L e [ (1 2Ly (1 -2+ ) ) r——

1—Ls
Ls 2
vy (25 ) o= wl

The proof is complete. g

With the above preparations, we are now at the stage of stating the global convergence of Algorithm
1.

Theorem 3.6. Suppose that Assumptions 1 and 2 hold. Then, the sequence {x} generated by Algorithm
1 converges to a solution of (1.1).

Proof. 1t follows from Lemma 2.6 and (3.1a) that
[wg —a*||* =(1 + ag)lJag — 2*|* = aglleg—1 — 2
+ o (1 + ap)||zk — zp—1|* (3.17)
Plugging (3.17) into (3.15), we obtain
k1 = 2|* = (L + a) g — 2*|° + agllag—r — 2|

Ls(ay — By

2
< <ozk(1 + ag) + 2Ln < T Is )) ) 2k — zp—1]* = vllwp — 24|, (3.18)

where v is given in (3.2). Similarly, by taking some § > 0 such that Assumption 2 holds, it follows from
the definition of wy, that

zr41 — well? =l @pr1 — (@ + an(ze — 25-1)) |12
=|lzr — zpg1|? + af ok — zp_1]|? 4+ 200 (2 — Tyr, Tk — TH_1)

>z, — zpar |” + apllae — w1

1 —
+ ok <— = ||z — $k+1HZ — (o + 0)|Jw — $k1”2>
ap +0

5 _
= ||z, — 2 |I” — Oallzg — vp—1 (3.19)
ap+ 6
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Then, substituting (3.19) into (3.18) yields

@1 — 2*)* = (1 + ap)llog — 2*|* + o|wp—1 — 2*||°

ov
< - [|lze1 — 2kl + yllzk — 2ol (3.20)
ay +90
where )
L — _
Vi = ai(l + ag) + 2Ln <w> + vagd > 0. (3.21)

By the upper boundedness of {«y } and the lower boundedness of {8} }, it is not difficult to verify that
the +;, defined by (3.21) has an upper bound 7, i.e.,

~\ 2
o~ ~ Ls(a — e
e <7:=a(l+a)+2Ln (W) + vad. (3.22)
— Ls
Below, we first define:
pr = log — 2| — anllze—1 — 2*|1* + yellan — zpa |

Since {ay } is non-decreasing, we have
prrt = ke =z — 2P = (U4 app)log — 2 + agflag—1 — 2|
+ Yertllzesr — ol — ellze — ze—a)?
ekt — 2| = (14 ap)llog — 2 + agflap—1 — 2|

+ Yertll e — zkll? — el — zr1]?

= <'7k+1 - a;j_ 5) [EE A (3.23)
By Assumption 2 and the boundedness of v and a, we claim that there exists some ¢ > 0 such that
o=~V < a0, Wk>1, (3.24)
o+ 0
which implies
(g +6)(Vey1 + ) < (@+0)(F + ) < dv. (3.25)

Therefore, we obtain from (3.23) and (3.24) that

fist — bk < =0 ||Tpgr — 2kl (3.26)

which implies that the sequence {1} is non-increasing. Hence, it follows from (3.26)and the bound-
edness of {ax} C (0, a] that

o — 2|* = agllor—1 — 2% < i < g (327)
Consequently, it comes from (3.27) that

k—1
g — 2|2 < @lag — 2|2+ D A" < @pp + s (3.28)
1-a
n=0
with g = ||z¢ — 2*||?. Combining (3.26)-(3.28) immediately leads to
k
- ~ ~ M1
5> ants — nll® < g1 = prar < g+ 8|y — 27 < @ o + T
n=1 -
which shows that
o
> ks — zel|? < +oo (3.29)

k=1
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and ||z+1 — zx|| — 0. It then follows from (3.19) and (3.29) that
lwr — 2rg1]|? = |ox — zpa1|)® + 2|k — zp_1||* + 200 (@) — Tpy1, 2k — Tp—1) — 0. (3.30)
Moreover, by the definitions of wy, and vy, in (3.1a) and (3.1b), respectively, we have
Jwr, — vkl = lag — Brlllzr — xx—1ll — 0, (3.31)
and
lzr — vkl = Bellze — ze—1ll = 0. (3.32)
Hence, from (3.5), (3.30)-(3.31), we get
Zk+1 — Ykl — 0,

which further implies that

lwi = yill < llwe = Tpgall + [ps1 — yel — 0 (3.33)
and
2k = yell < llzx = 2rgall + l2e4r = yrll = 0. (334)

Finally, we use Lemma 2.8 to show that the sequence {z}} converges to a solution of (1.1). We have
proven that inequality (3.20) holds for an arbitrary optimal solution x*. By (3.20), (3.29) and Lemma
2.7, we derive that limy_, o ||xx — 2*|| exists.

On the other hand, let 2* be a cluster point of a subsequence {zy,} of the sequence {zy}, that is,
Ty, — x* as j — oc. From (3.32) and (3.34), it follows that {wy}, {v).} and {y} converges to z*. We
will show that x* is a solution of (1.1). First, for every optimal solution x* of (1.1), it follows from the
optimality condition that

0e Vf(x*)+0g(z*) <= —Vf(z*) € dg(z¥),
which, together with the convexity of g, equals to
9(y) = g(a”) = (Vf(z"),y —27), VyeR" (3.35)

Recalling the definition of y;, and taking the corresponding subsequence {yy;, }, it follows from the
convexity of g that

(5 fw) =, ) < 90D~ glo). € R (336)

Taking the limit as j — oo in (3.36), it follows from (3.33) that

<“3 v —Vf<x*>,y—x*>smy)—g(x*» vy € R,

S

which, together with (3.35), immediately concludes that the cluster point of {x}} is a solution of (1.1).
O

4. OVERLAPPED INERTIAL PROXIMAL EXTRAGRADIENT ALGORITHM

In this section, we further propose a variant of Algorithm 1 for (1.1). Also, we will prove its global
convergence.

4.1. Algorithmic framework. Revisiting the iterative schemes of Algorithm 1, we observe that both
inertial steps use the information of iterates xj and z;_1, and the only distinction is their inertial
parameters. Therefore, we are naturally motivated to ask: can we construct two completely different
inertial steps? In this subsection, we modify the second inertial step (3.1b) of Algorithm 1 by utilizing
the information of the first inertial step (3.1a). Such a modification makes both inertial steps overlapped.
Namely, we call the new algorithm Overlapped inertial proximal ExtraGradient Algorithm (OEGA). The
specific iterative schemes of OEGA is presented in Algorithm 2.



INERTIAL PROXIMAL EXTRAGRADIENT ALGORITHMS 107

Algorithm 2 Overlapped inertial proximal extragradient algorithm (OEGA).

1: Choose initial points zp and z; € R™.

2: Select ay, o, s, satisfying Assumptions 1 and 3.

3: fork=1,2,--- do

4:
W = Tk + Ozk(:lik — l‘k—l), (4.1a)
v = wi + Br(wr — wi—1), (4.1b)
Yk = ProXg, (wk - SVf(’Uk)) ) (4.1¢c)
Th+1 = pI‘OXng (wk - va(yk)) . (41d)

5. end for

Remark 4.1. From the updating scheme (4.1a), we easily rewrite (4.1b) as
v = wi + Br(wg — wi—1)
= ap + (o + B + awfBi) (xr — 2p—1) — a—1Bk(Tp—1 — Tp—2).

Therefore, the iterate vy, in (4.1b) contains more historical information than the one generated by (3.1b),
which is possibly beneficial for improving the performance of Algorithm 2. We will show it in Section
5.

4.2. Convergence analysis. To begin this section, we first modify Assumption 2 as follows.

Assumption 3. The inertial sequence {ay,} is non-decreasing and {f}} satisfy 0 < ag, < & < 1 and
0 < B < B < 1. Moreover, for some > 0 and & > 0, we assume these parameters satisfying

~ 2 ~ 2
= LsB(a+1 LsBa - -
@+ 9) a(1+a)+4Ln<85(0‘+)> +4Ln< Sﬂo‘) Loas 45 | < ou,

1—Ls 1—-Ls

where v is defined by (3.2).

Note that Algorithms 1 and 2 share similar iterative schemes. Below, we only present the main
convergence theorem of Algorithm 2.

Theorem 4.2. Suppose that Assumptions 1 and 3 hold. Then, the sequence {z} generated by Algorithm
2 converges to a solution of (1.1).

Proof. 1t follows from (3.15), (3.17) and (3.19) that

zr1 — 2*)* = (1 + ag)llak — ¥ + agllap—1 — 2*|?

1 s\ 2
< - <1 — 2Ly (1 7.~ 77) ) [wp, — zpga |

2
+ (Ozk(l + Oék) + 4L77 (Lsﬁk(ak—i_l)) ) H-Tk: — l‘k_1H2

1—Ls

LsBrog_1\>
+4Ln <1ﬁ_k£SI> k-1 — Tp—2|?

< (1-oy(1-24 L8 )9 I 12
— — - — =||z -
S n n  1—Ls an+0 k+1 k

+ dpllze — zp—1)* + Tho1l|zr_1 — TH_2]|%,
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where
L +1)\? _
¢r = ag(1+ o) +4Ln —Sﬁk(ak ) + vaygd
1—Ls
and )
LsBrag—1
1 =4Ln | —/————
Tk—1 77( 1— Ls

Under Assumption 3, it follows from the boundedness of oy, and [ that

~ 2
or < ¢:=a(l+a)+4Ly (LSB(O‘JFD) + v

1—Ls
and
Lsfa )"
sBa
1 <T:=4L )
Th=1 =T " (1 — Ls)
Below, we denote
o = ok — 2*|1* — onllze—1 — 2** + (o + ) llze — ze1l]® + To-1llzp-1 — zr—2*.
With the definition of ¢, we have
Sv
Pr+1 — Pk < <¢k+1 - = + Tk+1) zke1 — 2. (4.2)
o + 0
By the boundedness of ag, ¢, and 7, we claim that there exists some ¢ > 0 such that
Sv
— =+ T < —0. 4.3
Prt1 o8 TS (4.3)

Therefore, under Assumption 3, it is easy to get
(g + 8)(Bpst + Thor + ) < @+ 0)(p+ 7+ 5) < bv.
Consequently, it follows from (4.2) and (4.3) that
Prr1 — Pr < =0 wps1 — 2%,
which implies that sequence {¢} is non-increasing, and its boundness for {ay } further delivers
lzy, — 2| = @llag—r — 2" < o1 < 1. (4.4)
It immediately follows from (4.4) that

k—1
ok — 22 < @lzo — | + o1 3 a" < @0 — oI + T2
n=0
Thus, we obtain
o
D llzrar — zil® < +o0
k=1
which show that
k41 — zx]] — 0.
Consequently, in some way analogous to (3.30)-(3.34), we have
lim [lwy, — 2] = lIm [Jwg —vgl| = lim [z — i = 0.
k—o0 k—o00 k—o0

The remainder proof is analogous to the proof Theorem 3.6. Hence, we omit it for the conciseness of
this paper. The proof is complete. g
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5. NUMERICAL EXPERIMENTS

In this section, we conduct the numerical performance of Algorithms 1 (DEGA) and 2 (OEGA) on two
well-known statistical optimization problems: Dantzig selector and Lasso. To show our improvements,
we compare DEGA and OEGA with some state-of-the-art gradient-like methods. Our code is written
by MATLAB 2021a, and all experiments are conducted on a 64-bit Windows PC equipped with Intel Core
15-12500h CPU@2.50GHz and 8GB RAM.

5.1. The Dantzig selector problem. We first consider the Dantzig selector problem introduced in [9].
Mathematically, it takes the form of

: 71 T _ <
min {|lally | [D7 KT (Kz = b) < 6] (5.1)

where K € R™*" is a design matrix, D € R™*" is a diagonal matrix whose i-th diagonal term
corresponds to the i-th column norm of K; b € R™ is an observation vector; ¢ is a tuning parameter
depending on the Gaussian noise standard deviation o. To implement our algorithms for finding a
solution of (5.1), we follow the way studied in [19] to reformulate (5.1) as the following form:

. 4 T . T 2
min Hx||1+§ K Kz —projo(K Kzx) , (5.2)
x

where ¢ > 0 is a penalty parameter, Q = {y | [|[D~*(y — K "b)|~o < 6} and projo(-) represents the
projection onto Q. Obviously, (5.2) falls into the form of (1.1).

We consider the first case studied in [19], in which the design matrices have unit column norms.
Specifically, we first randomly generate an m x n matrix with independent Gaussian components and
then normalize each column with unit norm, which is the design matrix K in (5.2). Then we randomly
generated a k-sparse vector x* € R", which is generated by

o {Sign(&) x (1+ |ag]), ifieT,

0, otherwise,

where 7T is a random sample set with cardinality x, a; ~ N(0,1), §& ~ U(—=1,1), and | - | is the
absolute value function. Finally, the observation vector b is generated via b = Kx* + ¢, where € is a
random Gaussian noise satisfying e ~ N (0, 021). In our experiments, we will consider two scenarios
on o, i.e, 0 = 0.05 and ¢ = 0.10. Moreover, we consider six cases on the problem setting, i.e.,
(m,n, k) = (7207,25604,80i) with¢ = 1,2,--- , 6.

To support the improvements of our algorithm, we here only compare our DEGA with the ex-
tended extragradient (denoted by EEG, see (1.5)), the general inertial proximal gradient (GIPGM in
short, see [39]), and the partially linearized ADMM (denoted by PLADM, see [19]). In our experiments,
for the model parameters in (5.2), we take o = 60 and § = /2log(n)o!?. Then, for algorithmic
parameters, we take the default settings for PLADM suggested in [19]. For the other three meth-
ods, we only consider constant settings for their parameters due to their similar iterative schemes.
Concretely, we simply set (ay, Bk, \x) = (0.92,0.84,~) for GIPGM, (s,7n) = (v, 8.87y) for EEG and
(ak, Bk, s,m) = (0.55,0.6,7,6.97) for DEGA, where v = 1/70. Here, we should emphasize that we
have tried our best to optimize all settings in our experiments. To ensure the fairness in comparisons,
all algorithms start with the same initial points 0 = (0, ...,0) , and stop at

2k = 21l 5
<107°.
max {||xg||2, 10} —
To measure the accuracy of a solution, we follow the way used in [9]. More specifically, we let Z be an
approximate solution obtained by algorithms, and let & be a post-processing solution of Z by the way
suggested in [19]. Then, we define
> (Fi — @})?

Porie = S minfa?, 0%}

Y i (8 — a7)?

Yoy min{x?, o2}’

and  ppost =
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Clearly, the smaller values of poiz and p,ost mean better Dantzig selectors (i.e., solutions of (5.1)). In
experiments, we generate ten groups of random data for each cases to demonstrate the stability of
algorithm. The averaged numerical results, including number of iterations (Iter.), computing time in
seconds (Time), porig, and ppost, are summarized in Table 1.

TaBLE 1. Numerical results for finding Dantzig selectors

o =0.05 o =0.10

i Method Iter. Time Porig (Ppost) Iter. Time Porig (Ppost)
DEGA 720.1 2.77 3.16 (0.49) 1374.7 5.10 3.69 (0.78)

GIPGM 937.4 1.81 3.13 (0.46) 2012.7 3.74 3.65 (0.75)

1 EEG 1138.9 439 3.23 (0.49) 1991.5 7.37 3.75 (0.79)
PLADM 1565.3 4.56 1.90 (0.38) 2252.5 6.32 2.96 (0.54)

DEGA 717.5 16.67 3.44 (0.71) 1485.1 30.61 4.14 (0.63)

GIPGM 953.5 10.84 3.39(0.71) 2163.7 22.36 4.07 (0.62)

2 EEG 1131.2 25.78 3.52 (0.71) 2133.2 43.90 4.25 (0.63)
PLADM 1530.9 27.48 2.13(0.47) 21509 33.34 3.36 (0.53)

DEGA 698.4 34.89 3.58 (0.55) 1505.7 73.42 4.39 (0.69)

GIPGM 929.6 23.38 3.51 (0.55) 2206.4 53.60 4.33 (0.69)

3 EEG 1068.7 53.40 3.75 (0.56) 2027.9 98.83 4.54 (0.70)
PLADM 1425.7 53.34 2.28 (0.37) 2068.1 75.08 3.60 (0.57)

DEGA 691.7 63.48 3.53 (0.66) 1458.5 128.73 4.62 (0.79)

GIPGM 916.2 42.07 3.48 (0.65) 2088.6 92.27 4.55 (0.77)

4 EEG 1058.9 96.99 3.68 (0.68) 1972.8 173.66 4.83 (0.82)
PLADM 1421.3 97.75 2.18 (0.45) 2035.2 134.78 3.77 (0.55)

DEGA 686.2 100.41 3.77 (0.64) 1359.3 195.73 4.78 (0.73)

GIPGM 922.5 67.57 3.69 (0.63) 2087.4 150.52 4.67 (0.72)

5 EEG 1046.8 153.22 3.98 (0.65) 1909.8 274.52 4.96 (0.75)
PLADM 1322.3 145.50 2.38 (0.50) 1976.9 213.35 3.86 (0.58)

DEGA 672.2 138.99 3.76 (0.73) 1389.9 293.96 4.48 (0.82)

GIPGM 916.8 94.88 3.66 (0.71) 1978.9 208.73 4.41 (0.81)

6 EEG 1041.8 215.36 3.95 (0.76) 1886.7 397.26 4.67 (0.86)
PLADM 1286.8 199.63 2.43 (0.46) 2028.2 321.52 3.61 (0.64)

It can be seen from Table 1 that the proposed DEGA runs the fastest in terms of taking the least
iteration for both scenarios of ¢ = 0.05 or ¢ = 0.1. When comparing DEGA and GIPGM, although
DEGA takes fewer iterations than GIPGM, the former taking more computing time than the latter.
The main reason is due to the one more evaluation on the gradient, which includes high-dimensional
matrix products. However, when comparing our DEGA with the EEG, the former performs much better
than the latter for large-scale cases, which sufficiently verifies that our inertial strategy is practical for
improving the performance of the extragradient method (1.5). Note that PLADM is a powerful splitting
method tailored for some structured convex optimization problems. The results in Table 1 demonstrate
that our DEGA is competitive when comparing it with PLADM.

Due to the randomness of the generated data, we can only see the averaged performance of all
compared algorithms. Therefore, to investigate the stability of the four algorithms, we show their
mean iterations and corresponding standard errors for each case with setting o = 0.05 in Fig. 1.
Comparatively, our DEGA runs a little more stable than the other three algorithms, which further
supports idea of this paper.

5.2. The Lasso problem. In this subsection, we further consider a well-known Lasso problem [14],
which is a fundamental problem in statistical learning and plays an important role in compressive
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FIGURE 1. Mean iterations and its standard error. From left to right, top to bottom: The
figures correspond to ¢ = 1,2, ..., 6, respectively, with setting 0 = 0.05

sensing and machine learning. The Lasso model reads as
. 1
min { Fa) i= alllly + 140 - b2} 63

where A € R"™*" is a design matrix, b € R™ is an observation vector, and p is a tuning parameter.
Obviously, (5.3) falls into the standard form of (1.1). Therefore, the proposed two new algorithms are
applicable to (5.3).

Below, we first introduce the way of generating problem data. We randomly generate matrix K &€
R™*™ with independent Gaussian entries, and normalize it by A = K/| K||. Then, we generate a
random k-sparse vector z* by the following MATLAB script:

x*=zeros(n,1); xs=randn(k,1); P=randi(n,k,1); *(P)=xs,
Finally, the observation vector b € R" is set as b = Ax”*. Therefore, it is clear that 2* is the true solution
of (5.3).

Considering that the proposed OEGA is not compared in Section 5.1, in this part, we compare it
with EEG, GIPGM, and DEGA. In our experiments, we conduct eight cases of the problem size, i.e,
(m,n, k) = (2561,1024i,40¢) with ¢« = 1,2,---,8. For the model parameter in (5.3), we take o =
5 x 1073, Like the settings in Section 5.1, for the algorithmic parameters, we set (s,1) = (0.78,6.25)
for EEG; (v, Br, \e) = (0.75,0.6,1.0) for GIPGM; (ay, Bg, 5,1) = (0.46,0.475,1.0,6.2) for DEGA,
(ak, Bk, s,m) = (0.41,0.13,1.05,8.1) for OEGA. To ensure the fairness in comparison, we take all
starting points as zeros and the following stopping criterion:

max { ||z, — zp_1 |, |[F(zx) — F(wg_1)|} < 10710

Due to the randomness of data, we report the averaged performance of the four algorithms for each
case. All results are summarized in Table 2.

It can be seen from Table 2 that our DEGA and OEGA outperform EEG and GIPGM in terms of
iterations and computing time. Unlike the results reported in Section 5.1, both DEGA and OEGA take
less computing time than the GIPGM, although our algorithms require one more evaluation on gradient.
The main reason is that the complexity of evaluating gradient of (5.3) is much lower than the one in
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TaBLE 2. Numerical results for solving Lasso

EEG GIPGM DEGA OEGA
7 Iter / Time Iter / Time Iter / Time Iter / Time
1 155.1/0.035 214.2 /0.034 76.0 /0.017 70.7 / 0.016
2 160.1 / 0.336 211.8 / 0.315 75.2/0.164 66.6 / 0.141
3 161.3 / 1.039 217.5/0.984 76.7 / 0.496 65.4/0.416
4 161.0 / 2.247 218.3/2.138 75.9 / 1.060 64.6 / 0.908
5 163.8 / 3.742 215.4/3.470 75.6 / 1.732 64.8 / 1.488
6 172.8 / 5.837 222.6 /5.320 77.9/ 2.636 67.0 / 2.289
7 164.3 / 7.576 217.9 /7.063 76.2 / 3.507 64.7 / 2.993
8 164.0 / 10.112 216.4/9.391 75.6 / 4.640 64.5/3.964
102 ‘
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kS 102 F ]
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FiGUre 2. Convergence behaviors of the four algorithms for solving (5.3) with
(m,n, k) = (512,2048, 80)

(5.1). In this case, the much fewer iterations can save some computing time, so that our algorithms
(i.e., DEGA and OEGA) runs faster than GIPGM. These results in Table 2 show that our inertial-type
extragradient methods are reliably practical for some real-world problems.

In Fig. 2, we plot the convergence curves of the four algorithms for solving (5.3) with (m,n, k) =
(512,2048, 80). As studied in [26], the original extragradient method has a sublinear convergence rate.
Although we cannot establish the sublinear convergence rates for our algorithms, we can see from Fig.
2 that they possibly have the same convergence rate as the original extragradient method. In the future,
we will consider this issue.

To make a complement illustration of Fig.3, we here show the box plots with respect to iterations
of the four algorithms solving (5.3), where we only show the first four cases for the problem size, i.e.,
(m,n, k) = (256i,10244,40¢) with i = 1,2,3,4. Clearly, all results show that our algorithms work
more stable than the other two algorithms. Moreover, all reported results on solving (5.3) indicate that
the OEGA works a little better than the DEGA, which further support that more historical information
in (4.1b) is helpful in algorithmic acceleration.
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FIGURE 3. Box plots with respect to iterations of the four algorithms solving (5.3) with
the first four cases, i.e., (m, n, k) = (2567,10244,407) with ¢ = 1,2, 3,4. From left to
right: they correspond to @ = 1,2, 3, 4, respectively

6. CONCLUSIONS

In this paper, we introduced two inertial proximal extragradient algorithms for solving a class of non-
smooth convex composite optimization problems. Both new algorithms have two inertial steps, which
make them flexible in algorithmic implementation. Moreover, the second new algorithm inherits more
historical information, which is possibly helpful for further improvements. Under some conditions, we
proved that both algorithms are globally convergent. Comparatively, our algorithms perform well and
stable in our experiments. In the future, we will consider some more general cases where the objective
function is nonsmooth and nonconvex.
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