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Abstract. To approximate common solutions for generalized mixed equilibrium problems involving
monotone and uniformly continuous operators and fixed point problem of nonexpansive semigroups in
real Hilbert spaces, we introduce an inertial extragradient algorithm with non-monotone step sizes. This
algorithm, derived from a combination of extragradient and viscosity methods, ensures strong conver-
gence without needing to estimate the operator’s Lipschitz constant. The algorithm’s effectiveness is
supported by a numerical example, showcasing its efficiency.
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1. Introduction

Let H be a real Hilbert space, whose inner product and norm are denoted by ⟨·, ·⟩ and ∥ · ∥. Let C
be a nonempty closed convex subset ofH. Let G,φ : C × C → R be two bifunctions and B : C → H
be a nonlinear mapping. The generalized mixed equilibrium problem (GMEP), finding x ∈ C such that

G(x, y) + φ(y, x)− φ(x, x) + ⟨B(x), y − x⟩ ≥ 0, ∀y ∈ C. (1.1)
The set of solutions of (1.1) is denoted by GMEP (G,φ,B). The GMEP, which is the focus of studies
in [9, 21, 24], offers a general framework that includes many well-known problems. For example, if
we set B = 0 and φ(u, v) = φ(u), then the generalized mixed equilibrium problem (1.1) becomes the
following mixed equilibrium problem: finding x ∈ C such that

G(x, y) + φ(y)− φ(x) ≥ 0, ∀y ∈ C. (1.2)
Problem (1.2) was studied by Ceng and Yao [11]. If we setφ = 0, then the generalizedmixed equilibrium
problem (1.1) reduces the following generalized equilibrium problem: finding x ∈ C such that

G(x, y) + ⟨B(x), y − x⟩ ≥ 0, ∀y ∈ C. (1.3)
Problem (1.3) was studied by Takahashi and Takahashi [37]. Also if we set φ = 0 and B = 0, then the
generalized mixed equilibrium problem (1.1) simplifies to the following equilibrium problem: finding
x ∈ C such that

G(x, y) ≥ 0, ∀y ∈ C. (1.4)
The solution set of (1.4) is denoted by EP (G). Equilibrium problems, a concept initiated by Ky Fan
[20] and further developed by Blum and Oetlli [1], offer a robust and adaptable framework for solving
diverse optimization problems in theory and practice.

A family Γa := {T (s) : 0 ≤ s < ∞} of mappings from C into itself is called nonexpansive
semigroup on C if it satisfies the following conditions:
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(i) T (0)x = x for all x ∈ C ;
(ii) T (s+ t) = T (s)T (t) for all s, t ≥ 0;
(iii) ∥T (s)x− T (s)y∥ ≤ ∥x− y∥ for all x, y ∈ C and s ≥ 0;
(iv) for all x ∈ C and s ≥ 0, s 7→ T (s)x is continuous.
The set of all the common fixed points of a family Γa is denoted by Fix(Γa), i.e.,

Fix(Γa) := {x ∈ C : T (s)x = x, s ≥ 0}.

The fixed point problem for a nonexpansive semigroup Γa is:

find x ∈ C such that x ∈ Fix(Γa). (1.5)

A nonexpansive semigroup Γa on C is said to be uniformly asymptotically regular (u.a.r) on C if for
all h > 0 and any bounded subset E of C,

lim
t→∞

sup
x∈E

∥T (h)(T (t)x)− T (t)x∥ = 0.

Nowadays, the fixed point problem for nonexpansive semigroups is a multidisciplinary subject that
attracts considerable attention. As a result, many authors have analyzed and studied iterative algo-
rithms for approximating the solution of the (1.5); see for example [2, 3, 4, 5, 6, 7, 8, 10, 13, 14, 16, 22,
26, 32, 35, 36, 45].

Researchers have recently explored iterative methods designed to approximate a common solution
for both generalized mixed equilibrium problems and fixed point problems see [12, 17, 30, 33, 44].
In 2021, Kheawborisut and Kangtunyakarn [25] proposed a generalized system of modified variational
inclusion problems (GSMVIP) as follows: find u ∈ H in such that

0 ∈ (A+B1)u and 0 ∈ (A+B2)u, (1.6)

where B1, B2 : H → 2H are set-valued mappings. The solution set of (1.6) is represented by Γ.
Inspired by the works of Kheawborisut and Kangtunyakarn [25], and Farid [21], Recently, Husain

and Asad [24] developed an iterative algorithm that combines inertial and subgradient extragradient
methods. This approach is designed to find common solutions for modified variational inclusion prob-
lems and mixed equilibrium problems within real Hilbert spaces. Assume that T : C → H be a
nonexpansive mapping and G,ϕ : C × C → R be two bifunctions. Let B : C → H be a Lipschitz
continuous and monotone mapping with positive constant L. Let the sequence {un} be generated for
any u0, u1, u ∈ H by 

wn = un + θn(un − un−1),
vn = SG

rn(wn − rnB(wn)),
vn = SG

rnQQn
(wn − rnB(vn)),

xn+1 = ηnu+ ζnzn + γnTun

where QQn = {x ∈ H : ⟨wn − rnB(wn)− vn, x− vn⟩ ≤ rnG(vn, x)} and {ηn}, {ζn}, {γn} ⊂ (0, 1)
with ηn + ζn + γn = 1, rn ≤ 1

L , θn ∈ [0, 1). Under some conditions on the parameters, they proved
that the sequence {un} converges strongly to q = PGMEP (G,ϕ,B)

⋂
Γu.

The methods of Farid [21], and Husain and Asad [24] require the mapping B to be Lipschitz contin-
uous, which restricts their practical use. To broaden applicability, we aim to develop a simpler, more
robust algorithm by eliminating this Lipschitz continuity assumption, thereby reducing sensitivity to
function-specific properties.

Based on existing research and a thorough review, we develop an inertial extragradient algorithm
with non-monotone step sizes for approximating a common solution of the generalized mixed equilib-
rium problem (1.1) for monotone and uniformly continuous operators and fixed point (1.5) of nonex-
pansive semigroups in the setting of real Hilbert spaces.
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This research aims to achieve the following objectives: our method only requires that the underlying
operator for the (1.1) be monotone, uniformly continuous and without the weak sequential continu-
ity condition often used in the literature. Our algorithm does not need any Armijo-type line search
techniques but rather uses an easily implementable self-adaptive step size technique that generates
non-monotonic sequence of step sizes. The control parameters are not dependent on the Lipschitz con-
stant of the mappingB and the strong convergence of the sequence generated by the proposed method
can be guaranteed without prior knowledge of the Lipschitz constant of the operator and without the
u.a.r condition used in [7, 26]. Finally our step size properly includes those in [27, 31, 40, 41].

2. Preliminaries

We begin by outlining fundamental definitions and results, which will be used in the analysis of our
proposed method.

Definition 2.1. The mapping T : C → H is said to be
(a) monotone if

⟨Tx− Ty, x− y⟩ ≥ 0, ∀x, y ∈ C;

(b) pseudomonotone if

⟨Tx, y − x⟩ ≥ 0 ⇒ ⟨Ty, y − x⟩ ≥ 0, ∀x, y ∈ C;

(c) nonexpansive if
∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C;

(d) L-Lipschitz continuous if there exists a constant L > 0 such that
∥Tx− Ty∥ ≤ L∥x− y∥, ∀x, y ∈ C;

(e) contraction if there exists a constant 0 ≤ k < 1 such that

∥Tx− Ty∥ ≤ k∥x− y∥, ∀x, y ∈ C;

Assumption 2.2. [1] LetG : C×C → R and ϕ : C×C → R be two bifunctions satisfying the following
assumptions:
(A1) G(x, x) = 0,∀x ∈ C;
(A2) G is monotone, i.e., G(x, y) +G(y, x) ≤ 0, ∀x, y ∈ C;
(A3) For each x, y, z ∈ C, limt→0G(tz + (1− t)x, y) ≤ G(x, y);
(A4) the bifunction G(·, ·) is weakly continuous. For each x ∈ C, y → G(x, y) is convex and lower

semicontinuous;
(B1) the bifunction ϕ(·, ·) is weakly continuous and the bifunction ϕ(·, y) is convex, ∀y ∈ C;
(B2) the bifunction ϕ is skew-symmetric, i.e.,

ϕ(x, x)− ϕ(x, y) + ϕ(y, y)− ϕ(y, x) ≥ 0,∀x, y ∈ C.

Lemma 2.3. [19] Assume thatG,ϕ : C×C → R be two bifunctions satisfying Assumption 2.1, for r > 0
and ∀x ∈ H, define a mapping Sr : H → C as follows:

Sr(x) =
{
z ∈ C : G(z, y) + ϕ(y, z)− ϕ(z, z) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
. (2.1)

Then the following hold:
(i) Sr is nonempty and single-valued;
(ii) Sr is firmly nonexpansive, i.e.,

∥Sr(x)− Sr(y)∥2 ≤ ⟨Sr(x)− Sr(y), x− y⟩, ∀x, y ∈ H;

(iii) F (Sr) = EP (G);
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(iv) EP (G) is closed and convex.

Remark 2.4. It follows from the definition of Sr that

G(Sr(x), y) + ϕ(y, Sr(x))− ϕ(Sr(x), Sr(x)) +
1

r
⟨y − Sr(x), Sr(x)− x⟩ ≥ 0,∀y ∈ C

which implies that

2⟨Sr(x)− y, Sr(x)− x⟩ ≤ 2r
(
G(Sr(x), y) + ϕ(y, Sr(x))− ϕ(Sr(x), Sr(x))

)
, ∀y ∈ C.

Lemma 2.5. [29] Each Hilbert space H satisfies the Opial conditions, i.e., for any sequence {un} with
un ⇀ u the inequality

lim inf
n→∞

∥un − u∥ < lim inf
n→∞

∥un − v∥ (2.2)

holds for every v ∈ H with v ̸= u.

Lemma 2.6. [43] A function F1 defined on a convex domain is uniformly continuous if and only if for
every ϵ1 > 0, there exists aK1 < ∞ such that ∥F1(u)− F1(v)∥ ≤ K1∥u− v∥+ ϵ1.

Lemma 2.7. [39] Let {bn} and {ϑn} be two nonnegative real sequences such that

bn+1 ≤ bn + ϑn, ∀n ≥ 1.

If
∑∞

n=0 ϑn < ∞, then limn→∞ bn exists.

Lemma 2.8. [34] Let {an} be a sequence of positive real numbers, {κn} be a sequence in (0, 1) such that
∞∑
n=1

κn = ∞ and φn is a sequence of real numbers. Suppose that

an+1 ≤ (1− κn)an + κnφn, ∀n ≥ 1.

If lim supk→∞ φnk
≤ 0 for all subsequences {ank

} of {an} satisfying the condition lim infk→∞(ank+1−
ank

) ≥ 0. Then, limn→∞ an = 0.

Lemma 2.9. [23] Let C be a nonempty closed convex subset of a real Hilbert space H. If T : C → C is
a nonexpansive mapping with Fix(T )̸= ∅, then the mapping I − T is demiclosed at 0, i.e., if {xn} is a
sequence in C weakly converges to x and if {(I − T )xn} converges strongly to 0, then (I − T )x = 0.

Lemma 2.10. [38] Let C be a nonempty bounded closed and convex subset of a real Hilbert spaceH . Let
Γa := {T (s) : 0 ≤ s < ∞} from C be a nonexpansive semigroup on C . Then for all h ≥ 0,

lim
t→∞

sup
x∈C

∥∥∥1
t

∫ t

0
T (s)xds− T (h)

(1
t

∫ t

0
T (s)xds

)∥∥∥ = 0.

Lemma 2.11. [28] Let H be a real Hilbert space. Then, the following assertions hold:

(i) ∥u+ v∥2 ≤ ∥u∥2 + 2⟨v, u+ v⟩, ∀u, v ∈ H.
(ii) 2⟨u, v⟩ = ∥u∥2 + ∥v∥2 − ∥u− v∥2 = ∥u+ v∥2 − ∥u∥2 − ∥v∥2, ∀u, v ∈ H.

Lemma 2.12. [46] For each u1, · · ·, um ∈ H and η1, · · ·, ηm ∈ [0, 1] with
∑m

i=1 ηi = 1, the following
equality holds

∥η1u1 + · · ·+ ηmum∥2 =
m∑
i=1

ηi∥ui∥2 −
∑

1≤i≤j≤m

ηiηj∥ui − uj∥2.
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3. Main Result

Let H be real Hilbert space and C be subset of H. Let Γa = {T (s) : 0 ≤ s < ∞} be one-parameter
nonexpansive semigroups onH . Let G,ϕ : C ×C → R be two bifunctions satisfying Assumption 2.1.
Let f : H → H be a contractionmappingwith constant k ∈ [0, 1). LetA,D : H → H be nonexpansive
mappings. Let {αn}, {βn}, {δn}, {ϵn}, {ξn}, {tn}, {τn} and {ρn} are nonnegative sequences satisfying
the following conditions:

(a) αn + βn + δn = 1, and lim infn→∞βnδn > 0;
(b) Let {ϵn} and {ξn} be positive real sequences such that limn→∞

ϵn
αn

= 0 and limn→∞
ξn
αn

= 0;
(c) 0 < tn < ∞;
(d) αn ∈ (0, 1), limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(e)
∑∞

n=1 τn < ∞, limn→∞ ρn = 0.
Assuming the usual conditions:
(C1) The feasible set C is nonempty closed and convex.
(C2) The operator B : H → H be monotone and uniformly continuous on H and satisfies the

following property: whenever {xn} ∈ C, xn ⇀ x∗, one has ∥B(x∗)∥ ≤ lim infn→∞ ∥B(xn)∥.
(C3) The bifunction ϕ is skew-symmetric and G is monotone.
(C4) The solution set Ω = Fix(Γa)

⋂
GMEP (G,ϕ,B) ̸= ∅.

We propose the following algorithm for finding the common solutions of (1.1) and (1.5).

Algorithm 3.1.
Step 0. The initial step:

Given χ ∈ (0, 1), γ ∈ (0, 2), r1 > 0, θ > 0, ϖ > 0, and let x0, x1 ∈ H be arbitrary.
Given xn−1, xn.

Step 1. Choose θn and ϖn such that

θn :=

{
min{θ, ϵn

∥xn−xn−1∥} if xn ̸= xn−1,

θ, otherwise.
(3.1)

And

ϖn :=

{
min{ϖ, ξn

∥xn−xn−1∥} if xn ̸= xn−1,

ϖ, otherwise.
(3.2)

Step 2. Set
an = xn + θn

(
A(xn)−A(xn−1)

)
,

bn = xn +ϖn

(
D(xn)−D(xn−1)

)
,

and compute
zn = Srn

(
an − rnB(an)

)
,

if zn = an then stop, an is a solution of (1.1). Else, do Step 3.
Step 3. Compute

vn = zn − rn(B(zn)−B(an)).

Step 4. Compute

xn+1 = αnf(bn) + βnvn + δn
1

tn

∫ tn

0
T (s)vnds.

Update

rn+1 :=

{
min

(
(ρn+χ)∥an−zn∥
∥B(an)−B(zn)∥ , rn + τn

)
if B(an) ̸= B(zn),

rn + τn otherwise.
(3.3)
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Set n := n+ 1 and go to Step 1.

Remark 3.1. By condition (b), from (3.1) we we obtain
θn∥xn − xn−1∥ ≤ ϵn and ϖn∥xn − xn−1∥ ≤ ξn.

then
lim
n→∞

θn
αn

∥xn − xn−1∥ = 0 (3.4)

and
lim
n→∞

ϖn

αn
∥xn − xn−1∥ = 0. (3.5)

Thus, there exist N1 > 0 and N2 > 0 such that
θn
αn

∥xn − xn−1∥ ≤ N1, ∀n ∈ N (3.6)

and
ϖn

αn
∥xn − xn−1∥ ≤ N2, ∀n ∈ N. (3.7)

These lemmas are essential to demonstrate the global convergence of our method.

Lemma 3.2. Let {rn} be a sequence defined by (3.3). Then, we have limn→∞ rn = r, where

r ∈
[
min

( χ

M
, r1

)
, r1 +

∞∑
n=1

τn

]
(3.8)

Proof. Since B is uniformly continuous, we obtain from Lemma 2.6 that for any given ϵ1 > 0, there
exists aK1 < ∞ such that ∥B(an)−B(zn)∥ ≤ K1∥an − zn∥+ ϵ1.Thus, we have

(ρn + χ)∥an − zn∥
∥B(an)−B(zn)∥

≥ (ρn + χ)∥an − zn∥
K1∥an − zn∥+ ϵ1

=
(ρn + χ)∥an − zn∥
(K1 + ϵ2)∥an − zn∥

≥ χ

M
,

where ϵ1 = ϵ2∥an − zn∥ for some ϵ2 ∈ (0, 1) and M = K1 + ϵ2. Hence, from the definition of rn+1,

the sequence {rn+1} is bounded below bymin
(

χ
M , r1

)
and we have

rn+1 ≤ rn + τn ≤ r1 +

∞∑
n=1

τn.

It implies that

min{ χ

M
, r1} ≤ rn ≤ r1 +

∞∑
n=1

τn.

By Lemma 2.7, it follows that limn→∞ rn denoted by r = limn→∞ rn exists. Clearly, we have r ∈[
min{ χ

M , r1}, r1 +
∑∞

n=1 τn

]
.

□

Remark 3.3. It follows from Lemma 3.2 and condition (e) that

lim
n→∞

(
1− (ρn + χ)2r2n

r2n+1

)
= 1− χ2 > 0, (3.9)

there exists n0 > 0 such that for all n ≥ n0, we have 1− (ρn+χ)2r2n
r2n+1

> 1−χ2

2 > 0.

Lemma 3.4. Let {xn} be a sequence generated by the Algorithm 3.1 and x∗ ∈ Ω. Then we have

∥vn − x∗∥2 ≤ ∥an − x∗∥2 −
(
1− (ρn + χ)2r2n

r2n+1

)
∥an − zn∥2. (3.10)
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Proof. It follows from (3.3) that

∥vn − x∗∥2 = ∥zn − rn(B(zn)−B(an))− x∗∥2

= ∥zn − x∗∥2 + r2n∥B(zn)−B(an)∥2 − 2rn⟨B(zn)−B(an), zn − x∗⟩
= ∥an − x∗∥2 + ∥zn − an∥2 − 2∥zn − an∥2 + 2⟨zn − an, zn − x∗⟩

+r2n∥B(zn)−B(an)∥2 − 2rn⟨B(zn)−B(an), zn − x∗⟩
= ∥an − x∗∥2 − ∥zn − an∥2 + 2⟨zn − (an − rnB(an)), zn − x∗⟩

+r2n∥B(zn)−B(an)∥2 − 2rn⟨B(zn), zn − x∗⟩
≤ ∥an − x∗∥2 − ∥zn − an∥2 + 2⟨zn − (an − rnB(an)), zn − x∗⟩

+
(ρn + χ)2r2n

r2n+1

∥an − zn∥2 − 2rn⟨B(zn), zn − x∗⟩

= ∥an − x∗∥2 −
(
1− (ρn + χ)2r2n

r2n+1

)
∥zn − an∥2

+2⟨zn − (an − rnB(an)), zn − x∗⟩ − 2rn⟨B(zn), zn − x∗⟩. (3.11)

Since zn ∈ C, x∗ ∈ GMEP (G,ϕ,B), we obtain

G(x∗, zn) + ⟨B(x∗), zn − x∗⟩+ ϕ(zn, x
∗)− ϕ(x∗, x∗) ≥ 0. (3.12)

Using the monotonicity of B, we get

⟨B(zn), zn − x∗⟩ = ⟨B(zn)−B(x∗), zn − x∗⟩+ ⟨B(x∗), zn − x∗⟩
≥ ⟨B(x∗), zn − x∗⟩. (3.13)

On the other hand, from Remark 2.4, we have

2⟨zn − (an − rnB(an)), zn − x∗⟩ ≤ 2rnG(zn, x
∗) + 2rnϕ(x

∗, zn)− 2rnϕ(zn, zn).

Using (3.12), (3.13) and (3.14), we get

∥vn − x∗∥2 ≤ ∥an − x∗∥2 −
(
1− (ρn + χ)2r2n

r2n+1

)
∥an − zn∥2

+2rn

(
G(zn, x

∗) +G(x∗, zn)
)

−2rn

(
ϕ(x∗, x∗)− ϕ(x∗, zn) + ϕ(zn, zn)− ϕ(zn, x

∗)
)

Applying the monotonicity of G and the skew symmetric of ϕ in above inequality. We have

∥vn − x∗∥2 ≤ ∥an − x∗∥2 −
(
1− (ρn + χ)2r2n

r2n+1

)
∥an − zn∥2,

we get the assertion of this lemma. □

Lemma 3.5. Let {xn} be a sequence generated by the Algorithm 3.1 and x∗ ∈ Ω. Then, we have ∀n ≥ n0

{xn} is bounded.
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Proof. Since x∗ ∈ Ω by using condition (a) and Lemma 3.4, we obtain

∥xn+1 − x∗∥ =

∥∥∥∥αnf(bn) + βnvn + δn
1

tn

∫ tn

0
T (s)vnds− x∗

∥∥∥∥
≤ αn∥f(bn)− x∗∥+ βn∥vn − x∗∥+ δn

∥∥∥∥ 1

tn

∫ tn

0
T (s)vnds− x∗

∥∥∥∥
≤ αn∥f(bn)− f(x∗)∥+ αn∥f(x∗)− x∗∥+ βn∥vn − x∗∥

+δn

∥∥∥∥ 1

tn

∫ tn

0
T (s)vnds− x∗

∥∥∥∥
≤ αnk∥bn − x∗∥+ αn∥f(x∗)− x∗∥+ βn∥vn − x∗∥

+δn

∥∥∥∥ 1

tn

∫ tn

0
T (s)vnds−

1

tn

∫ tn

0
T (s)x∗ds

∥∥∥∥
≤ αnk∥bn − x∗∥+ αn∥f(x∗)− x∗∥+ (1− αn)∥vn − x∗∥
≤ αnk∥bn − x∗∥+ αn∥f(x∗)− x∗∥+ (1− αn)∥an − x∗∥. (3.14)

On the other hand, from (3.6), we have
∥an − x∗∥ = ∥xn + θn(A(xn)−A(xn−1))− x∗∥

≤ ∥xn − x∗∥+ αn

( θn
αn

∥xn − xn−1∥
)

≤ ∥xn − x∗∥+ αnN1. (3.15)
Also, from (3.7), we have

∥bn − x∗∥ = ∥xn +ϖn(D(xn)−D(xn−1))− x∗∥

≤ ∥xn − x∗∥+ αn

(ϖn

αn
∥xn − xn−1∥

)
≤ ∥xn − x∗∥+ αnN2. (3.16)

From (3.14), (3.15) and (3.16), we have

∥xn+1 − x∗∥ ≤
(
1− (1− k)αn

)
∥xn − x∗∥+ αn∥f(x∗)− x∗∥+ αn

(
(1− αn)N1 + kαnN2

)
≤

(
1− (1− k)αn

)
∥xn − x∗∥+ αn∥f(x∗)− x∗∥+ αn(N1 +N2)

=
(
1− (1− k)αn

)
∥xn − x∗∥+ αn(1− k)

∥f(x∗)− x∗∥+ (N1 +N2)

1− k

≤ max
(
∥xn − x∗∥, ∥f(x

∗)− x∗∥+ (N1 +N2)

1− k

)
. (3.17)

By induction on n, we obtain

∥xn − x∗∥ ≤ max
(
∥xn0 − x∗∥, ∥f(x

∗)− x∗∥+ (N1 +N2)

1− k

)
,∀n ≥ n0.

Hence {xn} is bounded and consequently, we deduce that {an}, {zn}, {vn} and {f(bn)} are bounded.
□

4. Convergence Analysis

The strong convergence of our method will now be analyzed. It is important to highlight that this
strong convergence proof will not employ the two-case approach found in related works.

Theorem 4.1. Let {xn} be a sequence generated by Algorithm 3.1. Then, the sequence {xn} converges
strongly to x̃ ∈ Ω, where x̃ = PΩ[f(x̃)].
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Proof. Let x̃ ∈ Ω. From the definition of an, we get

∥an − x̃∥2 ≤ ∥xn − x̃∥2 + θ2n∥xn − xn−1∥2 + 2θn∥xn − x̃∥∥xn − xn−1∥

= ∥xn − x̃∥2 + αnθn
θn
αn

∥xn − xn−1∥2 + 2αn∥xn − x̃∥ θn
αn

∥xn − xn−1∥

= ∥xn − x̃∥2 + αnqqn (4.1)

where

qqn = θn∥xn − xn−1∥
θn
αn

∥xn − xn−1∥+ 2∥xn − x̃∥ θn
αn

∥xn − xn−1∥.

(4.2)

Also, from the definition of bn, we obtain

∥bn − x̃∥2 ≤ ∥xn − x̃∥2 +ϖ2
n∥xn − xn−1∥2 + 2ϖn∥xn − x̃∥∥xn − xn−1∥

= ∥xn − x̃∥2 + αnϖn
ϖn

αn
∥xn − xn−1∥2 + 2αn∥xn − x̃∥ϖn

αn
∥xn − xn−1∥

= ∥xn − x̃∥2 + αnppn (4.3)

where

ppn = ϖn∥xn − xn−1∥
ϖn

αn
∥xn − xn−1∥+ 2∥xn − x̃∥ϖn

αn
∥xn − xn−1∥.

(4.4)

From (3.4) and (3.5) it easy to prove that

lim
n→∞

qqn = 0 and lim
n→∞

ppn = 0. (4.5)

Then from Lemma 2.12, Lemma 3.4, (4.1) and (4.3), we have

∥xn+1 − x̃∥2 =

∥∥∥∥αnf(bn) + βnvn + δn
1

tn

∫ tn

0
T (s)vnds− x̃

∥∥∥∥2
≤ αn∥f(bn)− x̃∥2 + βn∥vn − x̃∥2 + δn

∥∥∥∥ 1

tn

∫ tn

0
T (s)vnds− x̃

∥∥∥∥2
−βnδn

∥∥∥∥ 1

tn

∫ tn

0
T (s)vnds− vn

∥∥∥∥2
≤ αn

(
∥f(bn)− f(x̃)∥+ ∥f(x̃)− x̃∥

)2
+ βn∥vn − x̃∥2

+δn

∥∥∥∥ 1

tn

∫ tn

0
T (s)vnds−

1

tn

∫ tn

0
T (s)x̃ds

∥∥∥∥2 − βnδn

∥∥∥∥ 1

tn

∫ tn

0
T (s)vnds− vn

∥∥∥∥2
≤ αn

(
k∥bn − x̃∥+ ∥f(x̃)− x̃∥

)2
+ (1− αn)∥vn − x̃∥2

−βnδn

∥∥∥∥ 1

tn

∫ tn

0
T (s)vnds− vn

∥∥∥∥2
≤ αn∥bn − x̃∥2 + αn

(
2∥bn − x̃∥∥f(x̃)− x̃∥+ ∥f(x̃)− x̃∥2

)
+ (1− αn)∥vn − x̃∥2

−βnδn

∥∥∥∥ 1

tn

∫ tn

0
T (s)vnds− vn

∥∥∥∥2
≤ αn∥bn − x̃∥2 + αn

(
2∥bn − x̃∥∥f(x̃)− x̃∥+ ∥f(x̃)− x̃∥2

)
+ (1− αn)∥an − x̃∥2
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−(1− αn)
(
1− (ρn + χ)2r2n

r2n+1

)
∥an − zn∥2 − βnδn

∥∥∥∥ 1

tn

∫ tn

0
T (s)vnds− vn

∥∥∥∥2
≤ αn

(
∥xn − x̃∥2 + αnppn

)
+ αn

(
2∥bn − x̃∥∥f(x̃)− x̃∥+ ∥f(x̃)− x̃∥2

)
+(1− αn)(∥xn − x̃∥2 + αnqqn)− (1− αn)

(
1− (ρn + χ)2r2n

r2n+1

)
∥an − zn∥2

−βnδn

∥∥∥∥ 1

tn

∫ tn

0
T (s)vnds− vn

∥∥∥∥2
≤ ∥xn − x̃∥2 + αn

(
2∥bn − x̃∥∥f(x̃)− x̃∥+ ∥f(x̃)− x̃∥2 + qqn + ppn

)
−(1− αn)

(
1− (ρn + χ)2r2n

r2n+1

)
∥an − zn∥2 − βnδn

∥∥∥∥ 1

tn

∫ tn

0
T (s)vnds− vn

∥∥∥∥2 .
(4.6)

Suppose that {∥xnk
− x̃∥2} is a subsequence of {∥xn − x̃∥2} satisfying

lim inf
k→∞

(
∥xnk+1 − x̃∥2 − ∥xnk

− x̃∥2
)
≥ 0. (4.7)

From (4.6), we obtain

(1− αnk
)
(
1−

(ρnk
+ χ)2r2nk

r2nk+1

)
∥ank

− znk
∥2 + βnk

δnk

∥∥∥∥ 1

tnk

∫ tnk

0
T (s)vnk

ds− vnk

∥∥∥∥2
≤ ∥xnk

− x̃∥2 − ∥xnk+1 − x̃∥2 + αnk

(
2∥bnk

− x̃∥∥f(x̃)− x̃∥+ ∥f(x̃)− x̃∥2 + qqnk
+ ppnk

)
.

From above inequality and (4.7), and since limn→∞ αn = 0, we have

lim sup
k→∞

(
(1− αnk

)
(
1−

(ρnk
+ χ)2r2nk

r2nk+1

)
∥ank

− znk
∥2 + βnk

δnk

∥∥∥∥ 1

tnk

∫ tnk

0

T (s)vnk
ds− vnk

∥∥∥∥2 )
≤ lim sup

k→∞

(
∥xnk

− x̃∥2 − ∥xnk+1 − x̃∥2 + αnk

(
2∥bnk

− x̃∥∥f(x̃)− x̃∥+ ∥f(x̃)− x̃∥2 + qqnk
+ ppnk

))
= − lim inf

k→∞

(
∥xnk+1 − x̃∥2 − ∥xnk

− x̃∥2
)

≤ 0.

Recalling (3.9) and condition (a) we have

lim
k→∞

∥ank
− znk

∥ = 0, lim
k→∞

∥∥∥∥∫ tnk

0

T (s)vnk
ds− vnk

∥∥∥∥ = 0. (4.8)

On the other hand, from (3.6), we have

∥ank
− xnk

∥ = ∥θnk
(A(xnk

)−A(xnk−1))∥
≤ θnk

∥xnk
− xnk−1∥

≤ αnk
N1.

Thus
lim
k→∞

∥ank
− xnk

∥ = 0. (4.9)

Since
∥znk

− xnk
∥ ≤ ∥znk

− ank
∥+ ∥ank

− xnk
∥.

It follows from (4.8) and (4.9) that
lim
k→∞

∥znk
− xnk

∥ = 0. (4.10)
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SinceB is uniformly continuous onH and limn→∞ ∥znk
−ank

∥ = 0. It follows from ∥vnk
−znk

∥ = ∥rnk
(B(znk

)−
B(ank

))∥ that
lim
k→∞

∥vnk
− znk

∥ = 0. (4.11)

Thus, we can find that
lim
k→∞

∥vnk
− xnk

∥ = 0. (4.12)

From the definition of xnk+1, we have

∥xnk+1 − xnk
∥ ≤ αnk

∥f(bnk
)− xnk

∥+ βnk
∥vnk

− xnk
∥+ δnk

∥∥∥∥ 1

tnk

∫ tnk

0

T (s)vnk
ds− xnk

∥∥∥∥
≤ αnk

∥f(bnk
)− xnk

∥+ (1− αnk
)∥vnk

− xnk
∥

+δnk

∥∥∥∥ 1

tnk

∫ tnk

0

T (s)vnk
ds− vnk

∥∥∥∥ .
It follows from (4.8) and (4.12) that

lim
k→∞

∥xnk+1 − xnk
∥ = 0. (4.13)

Further, for all h ≥ 0, we see that

∥vnk
− T (h)vnk

∥ ≤
∥∥∥∥vnk

− 1

tnk

∫ tnk

0

T (s)vnk
ds

∥∥∥∥
+

∥∥∥∥ 1

tnk

∫ tnk

0

T (s)vnk
ds− T (h)

( 1

tnk

∫ tnk

0

T (s)vnk
ds
)∥∥∥∥

+

∥∥∥∥T (h)( 1

tnk

∫ tnk

0

T (s)vnk
ds
)
− T (h)vnk

∥∥∥∥ . (4.14)

Using (4.8) and Lemma 2.10, we have

lim
k→∞

∥vnk
− T (h)vnk

∥ = 0. (4.15)

Now, we prove that ωw(xn) ⊂ Ω, where

ωw(xn) =
{
x ∈ H1 : xni

⇀ x for some subsequences {xni
} of {xn}

}
.

Since the sequence {xn} is bounded we have ωw(xn) is nonempty. Let x̃ ∈ ωw(xn). Thus, there exists a subse-
quence {xnk

} of {xn} such that xnk
⇀ x̃ as k → ∞.

Since limk→∞ ∥ank
− xnk

∥ = 0, we have that ank
⇀ x̃ as k → ∞. Next, we show that x̃ ∈ GMEP (G,ϕ,B).

From zn = Srn

(
an − rnB(an)

)
, we have

G(zn, y) + ϕ(y, zn)− ϕ(zn, zn) + ⟨B(an), y − zn⟩+
1

rn
⟨y − zn, zn − an⟩ ≥ 0, ∀y ∈ C.

It follows from the monotonicity of G that

ϕ(y, zn)− ϕ(zn, zn) + ⟨B(an), y − zn⟩+
1

rn
⟨y − zn, zn − an⟩ ≥ G(y, zn), ∀y ∈ C

and

ϕ(y, znk
)− ϕ(znk

, znk
) + ⟨B(ank

), y − znk
⟩+ ⟨y − znk

,
znk

− ank

rnk

⟩ ≥ G(y, znk
), ∀y ∈ C. (4.16)

For any 0 < t ≤ 1 and y ∈ C, let dt = ty + (1− t)x̃, we have dt ∈ C. Then from (4.16), we obtain

⟨B(dt), dt − znk
⟩ ≥ ϕ(znk

, znk
)− ϕ(dt, znk

) + ⟨B(dt), dt − znk
⟩

−⟨B(ank
), dt − znk

⟩ − ⟨dt − znk
,
znk

− ank

rnk

⟩+G(dt, znk
)

= ϕ(znk
, znk

)− ϕ(dt, znk
) + ⟨B(dt)−B(znk

), dt − znk
⟩

+⟨B(znk
)−B(ank

), dt − znk
⟩ − ⟨dt − znk

,
znk

− ank

rnk

⟩+G(dt, znk
).

(4.17)
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Since B is uniformly continuous on H and limn→∞ ∥znk
− ank

∥ = 0 (see(4.8)), we obtain limk→∞ ∥B(znk
) −

B(ank
)∥ = 0. From the monotonicity of B, the weakly lower semicontinuity of ϕ and znk

⇀ x̃, it follows from
(4.17) that

⟨B(dt), dt − x̃⟩ ≥ ϕ(x̃, x̃)− ϕ(dt, x̃) +G(dt, x̃). (4.18)
Hence, from Assumption 2.1 and (4.18), we have

0 = G(dt, dt) + ϕ(dt, x̃)− ϕ(dt, x̃) ≤ tG(dt, y) + (1− t)G(dt, x̃) + tϕ(y, x̃) + (1− t)ϕ(x̃, x̃)− ϕ(dt, x̃)

= t
(
G(dt, y) + ϕ(y, x̃)− ϕ(dt, x̃)

)
+(1− t)

(
G(dt, x̃) + ϕ(x̃, x̃)− ϕ(dt, x̃)

)
≤ t

(
G(dt, y) + ϕ(y, x̃)− ϕ(dt, x̃)

)
+ (1− t)t⟨B(dt), y − x̃⟩, (4.19)

which implies that G(dt, y) + ϕ(y, x̃)− ϕ(dt, x̃) + (1− t)⟨B(dt), y − x̃⟩ ≥ 0. Letting t → 0+ we have

G(x̃, y) + ϕ(y, x̃)− ϕ(x̃, x̃) + ⟨B(x̃), y − x̃⟩ ≥ 0, ∀y ∈ C,

which implies that x̃ ∈ GMEP (G,ϕ,B).

Next, we show that x̃ ∈ Fix(Γa). Since limk→∞ ∥vnk
−xnk

∥ = 0 (see(4.12)), we have vnk
⇀ x̃ as k → ∞. Now,

for all r ≥ 0 we have

∥vnk
− T (r)x̃∥ ≤ ∥vnk

− T (r)vnk
∥+ ∥T (r)vnk

− T (r)x̃∥ ≤ ∥vnk
− T (r)vnk

∥+ ∥vnk
− x̃∥.

It follows from (4.15) that

lim inf
k→∞

∥vnk
− T (r)x̃∥ ≤ lim inf

k→∞
∥vnk

− x̃∥.

By the Opial property of the Hilbert space H (see(Lemma 2.5)), we obtain that T (r)x̃ = x̃ for all r ≥ 0, which
implies that x̃ ∈ Fix(Γa). Since x̃ ∈ ωw(xn), it follows that ωw(xn) ⊂ Ω. Next, we show that

lim sup
k→∞

⟨f(x̃)− x̃, xnk+1 − x̃⟩ ≤ 0.

Let a subsequence {xnkj
} of {xnk

} which converges weakly to some x̂ ∈ Ω, and such that

lim
j→∞

⟨f(x̃)− x̃, xnkj
− x̃⟩ = lim sup

k→∞
⟨f(x̃)− x̃, xnk

− x̃⟩.

Since {xnkj
} converges weakly to x̂ ∈ Ω and x̃ = PΩ[f(x̃)], it follows that

lim sup
k→∞

⟨f(x̃)− x̃, xnk+1 − x̃⟩ = lim sup
k→∞

⟨f(x̃)− x̃, xnk
− x̃⟩ = ⟨f(x̃)− x̃, x̂− x̃⟩ ≤ 0. (4.20)

On the other hand, since x̃ ∈ Ω it follows from Lemma 2.11 that

∥xnk+1 − x̃∥2 =
∥∥∥αnk

(f(bnk
)− f(x̃)) + βnk

(vnk
− x̃) + δnk

( 1

tnk

∫ tnk

0

T (s)vnk
ds− x̃

)
+αnk

(f(x̃)− x̃)
∥∥∥2

≤
∥∥∥αnk

(f(bnk
)− f(x̃)) + βnk

(vnk
− x̃) + δnk

( 1

tnk

∫ tnk

0

T (s)vnk
ds− x̃

)∥∥∥2
+2αnk

⟨f(x̃)− x̃, xnk+1 − x̃⟩

≤ αnk
∥f(bnk

)− f(x̃)∥2 + βnk
∥vnk

− x̃∥2 + δnk

∥∥∥ 1

tnk

∫ tnk

0

T (s)vnk
ds− x̃

∥∥∥2
+2αnk

⟨f(x̃)− x̃, xnk+1 − x̃⟩

≤ αnk
k∥bnk

− x̃∥2 + βnk
∥vnk

− x̃∥2 + δnk

(
1

tnk

∫ tnk

0

∥T (s)vnk
− T (s)x̃||ds

)2

+2αnk
⟨f(x̃)− x̃, xnk+1 − x̃⟩

≤ αnk
k∥bnk

− x̃∥2 + (1− αnk
∥vnk

− x̃∥2 + 2αnk
⟨f(x̃)− x̃, xnk+1 − x̃⟩. (4.21)

Using Lemma 3.4, (4.1), (4.3) and (4.21), we get
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∥xnk+1 − x̃∥2 ≤
(
1− (1− k)αnk

)
∥xnk

− x̃∥2 + αnk

(
kppnk

+ (1− αnk
)qqnk

)
+2αnk

⟨f(x̃)− x̃, xnk+1 − x̃⟩

≤
(
1− (1− k)αnk

)
∥xnk

− x̃∥2

+(1− k)αnk

(
ppnk

+ qqnk

1− k
+

2⟨f(x̃)− x̃, xnk+1 − x̃⟩
1− k

)
= (1− σnk

)∥xnk
− x̃∥2 + σnk

(
ppnk

+ qqnk

1− k
+

2⟨f(x̃)− x̃, xnk+1 − x̃⟩
1− k

)
where σnk

= (1− k)αnk
. Let φnk

=
ppnk

+qqnk

1−k +
2⟨f(x̃)−x̃,xnk+1−x̃⟩

1−k , since
∞∑

nk=1

αnk
= ∞, lim

k→∞
αnk

= 0,

it is easy to see that
∞∑

nk=1

σnk
= ∞, lim

k→∞
σnk

= 0

and from (4.5), (4.20), we obtain
lim sup
k→∞

φnk
≤ 0.

Thus from (4.7) all the conditions of Lemma 2.8 are satisfied.
Hence we deduce that limn→∞ ∥xn − x̃∥2 = 0. Consequently, limn→∞ ∥xn − x̃∥ = 0.Therefore, xn converges
strongly to x̃. This completes the proof. □

5. Numerical Example

In this section, numerical experiments are provided, alongwith a comparison of our proposedmethod
with existing methods.

Example 5.1. LetH = (l2(R), ∥·∥),where l2(R) := {x = (x1, x2, · · ·, xn, · · ·), xi ∈ R :
∑∞

i=1 |xi|2 <
∞}, ∥x∥2 =

√
(
∑∞

i=1 |xi|2), we define the set C := {x ∈ l2(R) : ∥x∥2 ≤ 1}, let B,A,D, f : C → R
be defined by B(x) = x, A(x) = 1

2x, D(x) = 1
4x, f(x) = 4

5x, respectively. Let the bifunctions
G,ϕ : C × C → R be defined by G(x, y) = (x − 5)(y − x) and ϕ(x, y) = x − y, for all x, y ∈ C ,
respectively. Clearly, we observe that the bifunctions G,ϕ satisfy Assumptions 2.1, B is monotone
and uniformly continuous, f is a contraction mapping and A and B are nonexpansive mapping. We
define the mappings T (s) : R → R as follows; T (s)x = 10−2sx. Clearly, we observe that T (s) is
nonexpansive semigroups. Since zn = Srn(an − rnB(an)), we have

G(zn, y) + ϕ(y, zn)− ϕ(zn, zn) + ⟨B(an), y − zn⟩+
1

rn
⟨y − zn, zn − an⟩ ≥ 0, ∀y ∈ C

=⇒ (zn − 5)(y − zn) + y − zn + an(yn − zn) +
1

rn
(y − zn)(zn − an) ≥ 0, ∀y ∈ C

=⇒ (y − zn)

(
zn − 4 + an +

1

rn
(zn − an)

)
≥ 0, ∀y ∈ C

=⇒ zn − 4 + an +
1

rn
(zn − an) = 0

=⇒ zn =
an + rn(4− an)

1 + rn
.
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In all test the parameters are taken as follows: χ = 0.4, θ = 3.4, ϖ = 2.5, τn = 1
(n+1)1.1

, ϵn = ξn =
1

(2n+1)3
, ρn = 1

(n+1) , αn = 1
2(n+10) , tn = 5.5, s = 1.5;βn = n

2(n+10) , δn = n+19
2(n+10) .

The algorithm stop if ∥xn+1 − xn∥ < 10−4, we consider the following cases for this numerical experi-

ment.
Case 1: Take x0 = (12 ,

1
4 ,

1
8 , · · ·), and x1 = (13 ,

1
9 ,

1
27 , · · ·),

Case 2: Take x0 = (12 ,
1
6 ,

1
18 , · · ·), and x1 = (−1

3 , 16 ,
−1
18 , · · ·),

Case 3: Take x0 = (38 ,
3
16 ,

3
32 , · · ·), and x1 = (−1

3 , 19 ,
−1
27 , · · ·),

Case 4: Take x0 = (38 ,
3
16 ,

3
32 , · · ·), and x1 = (19 ,

1
18 ,

1
36 , · · ·),

The result of this experiment is reported in the Table 5.1 with comparison of the proposed method to

the methods proposed by Farid [21], and Husain and Asad [24].

Table 5.1: Numerical results for Example 5.1
Case 1 Case 2 Case 3 Case 4

No. It. CPU(Sec.) No. It. CPU(Sec.) No. It. CPU(Sec.) No. It. CPU(Sec.)
The method in [24] 72 0.0814 72 0.0921 73 0.0832 73 0.0862
The method in [21] 54 0.0652 54 0.0566 54 0.0514 54 0.0511

The proposed method 14 0.0071 11 0.0054 11 0.0085 11 0.0064

6. Conclusions

This paper proposes an iterative method to approximate solutions within the common solution set of
(1.1) and (1.5) in real Hilbert spaces. Our approach generalizes existing methods and can be applied to
a wider range of problems, including mixed equilibrium problems, generalized equilibrium problems,
and variational inequalities.
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