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Abstract. This paper presents an inertial dynamic subgradient algorithm to solve the stronglymonotone
equilibrium problem over the common fixed point sets of a finite family of quasi-nonexpansive mappings
in a real Hilbert space. According to certain constraint qualifications on the scalar sequences, we show
the strong convergence theorem of the proposed algorithm by integrating inertial and subgradient meth-
ods along with dynamic weight. Numerical experiments are performed to illustrate the efficacy of the
proposed algorithm.

Keywords. Equilibriumproblems, Fixed point problems, Stronglymonotone bifunction,Quasi-nonexpansive
mapping, Inertial method, Subgradient method.
© Optimization Eruditorum

1. Introduction

The equilibrium problem was introduced by Blum and Oettli [6] as a generalization of various im-
portant mathematical problems, including fixed point problems, variational inequality problems, null
point problems, optimization problems, saddle point problems, and Nash equilibrium problems, see
[5, 6, 8, 16], and the references therein. The equilibrium problem can be expressed as follows:

Find a point q ∈ C such that f(q, y) ≥ 0, ∀y ∈ C, (1.1)

where C is a nonempty closed convex subset of a real Hilbert space H , and f : H × H → R is a
bifunction. The methods to solve the equilibrium problem (1.1) have been studied extensively such
as the proximal point method, the extragradient method, the gap function method, and the projection-
type method, see [3, 20, 21, 22]. Additionally, the projected subgradient method proposed by Santos and
Schmeimberg, as detailed in [27], is one of the commonly utilized methods for solving the equilibrium
problem (1.1). It is emphasized that this method needs to calculate the metric projection onto the
nonempty closed convex subset C , and this calculation can impact its computational efficiency when

the structure of C is complicated, for example, C :=
M⋂
j=1

Cj , where Cj , j = 1, 2, . . . ,M , are nonempty

simple closed convex subsets of H .
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On the other hand, it is well known that focusing on the problem of finding a common point of
intersection is itself an important problem, known as the feasibility problem:

Find a point q ∈ H such that q ∈
M⋂
j=1

Cj ̸= ∅, (1.2)

where Cj , j = 1, 2, . . . ,M , are nonempty closed convex subsets of H .
In light of the above significances, the equilibrium problem over the common fixed point sets is

a significant mathematical instrument in many fields, for instance, in the Nash-Cournot oligopolistic
equilibriummodels, in the power control problem for code divisionmultiple access systems, and others.
For additional information, see [4, 9, 10, 15, 17, 25, 26, 28], and the references therein. This notable
advantage leads to the development of new algorithms for solving the equilibrium problem over the
common fixed point sets. The equilibrium problem over the common fixed point sets is formulated as
follows:

Find a point q ∈
M⋂
j=1

F (Tj) such that f(q, y) ≥ 0, ∀y ∈
M⋂
j=1

F (Tj), (1.3)

where Tj : H → H , j = 1, 2, . . . ,M , are mappings and F (Tj) := {x ∈ H : Tjx = x} represents
the set of fixed points of Tj . The methods for solving the equilibrium problem over the common fixed
point sets have been performed by using the ideas of methods implemented for equilibrium problems
and fixed point problems. In 2022, Promsinchai and Nimana [25] proposed the following algorithm
by combining the techniques of the subgradient-type and extrapolated cyclic methods for solving the
problem (1.3), when f is a strongly monotone bifunction and Tj : H → H , j = 1, 2, . . . ,M are cutter
mappings. They proved that a sequence {xk} generated by the Algorithm 1 below converges strongly
to the unique solution of the problem (1.3).

Algorithm 1 Subgradient-Type Extrapolation Cyclic Algorithm (STECA)

Initialization. Choose parameters µ ∈ (0,∞), {βk} ⊂ (0,∞) with
∞∑
k=1

βk = ∞,
∞∑
k=1

β2
k < ∞,

{αk} ⊂ (0,∞) with
∞∑
k=1

αkβk = ∞, and lim
k→∞

αk = 0. Pick x1 ∈ H and set k = 1.

Step 1. Compute

σ(xk) =


M∑
j=1

⟨Txk − Sj−1xk, Sjxk − Sj−1xk⟩

∥Txk − xk∥2
, if xk ̸∈

M⋂
j=1

F (Tj),

1, otherwise,

where T := TMTM−1 · · ·T1, S0 = I , Sj := TjTj−1 · · ·T1, and I is an identity mapping.
Step 2. Take yk ∈ ∂2f(xk, xk) and calculate

dk = σ(xk)(xk − Txk) + αkyk.

Step 3. Compute

ηk = max {µ, ∥dk∥} .

Step 4. Update xk+1 by

xk+1 = xk −
βk
ηk

dk.

Step 5. Put k := k + 1 and return to Step 1.
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Meanwhile, the inertial method was first introduced in Polyak [24], which originates from the heavy
ball method (an implicit discretization) of the second-order dynamical systems in time [1, 2]. This
method has been widely studied to accelerate convergence properties of algorithms, for instance, see
[13, 14, 22], and the references therein. The main characteristic of this method is that the next iteration
is based on implementing the results of the two previous iterations.

In this paper, we focus on developing an algorithm to solve the equilibrium problem over the common
fixed point sets. Specifically, we introduce an inertial dynamic subgradient algorithm to find a solution
to the equilibrium problem (1.3) when the bifunction is strongly monotone and the involved mappings
are quasi-nonexpansive. The effectiveness of the proposed algorithm is demonstrated through several
numerical experiments.

This paper is organized as follows: Section 2 reviews some fundamental definitions and results to
be used in afterward sections. Section 3 presents the inertial dynamic subgradient algorithm and the
corresponding strong convergence theorem. In Section 4, we will be discussing and comparing the
numerical experiments of the proposed algorithm with some appeared algorithms. This paper finishes
with some conclusions in Section 5.

2. Preliminaries

Let H be a real Hilbert space endowed with inner product ⟨· , · ⟩, and its induced norm ∥ · ∥. For a
sequence {xk} ⊂ H , the strong convergence and the weak convergence of a sequence {xk} to a point
x ∈ H are denoted by xk → x and xk ⇀ x, respectively. The weak limit set of the sequence {xk} ⊂ H
is represented by ωw(xk), that is, ωw(xk) = {x ∈ H : there is a subsequence {xkn} of {xk} such that
xkn ⇀ x}. The notation R and N will stand for the set of the real numbers and the natural numbers,
respectively.

We begin by collecting some useful definitions and properties for the sake of further use.

Definition 2.1. A bifunction f : H × H → R is said to be δ-strongly monotone on H if there exists a
constant δ > 0 such that

f(x, y) + f(y, x) ≤ −δ∥x− y∥2, for all x, y ∈ H.

Definition 2.2. A mapping T : H → H is said to be quasi-nonexpansive if F (T ) is a nonempty set and

∥Tx− q∥ ≤ ∥x− q∥, for all x ∈ H, q ∈ F (T ).

Remark 2.3. We notice that F (T ) is closed and convex when T is a quasi-nonexpansive mapping, see
[11].

Definition 2.4. Amapping T : H → H is said to be demiclosed at y ∈ H if for each sequence {xk} ⊂ H
with xk ⇀ q ∈ H and Txk → y, then Tq = y.

For a function f : H → R, the subdifferential of f at x ∈ H is given by

∂f(x) = {v ∈ H : f(y)− f(x) ≥ ⟨v, y − x⟩, for all y ∈ H}.

The function f is said to be subdifferentiable at x if ∂f(x) ̸= ∅.

Lemma 2.5. [7] For each x ∈ H , the subdifferentiable ∂f(x) of a convex continuous function f is a
weakly closed and bounded convex set.

For a bifunction f : H × H → R which is convex in the second argument, that is, the function
f(x, ·) : H → R is convex at x, for all x ∈ H . We denote the diagonal subdifferential [12] at x to be
the set of all subgradient of f(x, ·) at x, and it is denoted by ∂2f(x, x) := ∂2f(x, ·)(x).
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Lemma 2.6. [8] For a nonempty convex subset C inH , let f : C → R be a convex, subdifferentiable, and
lower semicontinuous function on C . Then, x∗ is a solution to the following convex problem:

min {f(x) : x ∈ C}

if and only if 0 ∈ ∂f(x∗) + NC(x
∗), where NC(x

∗) is the normal cone of C at x∗, that is NC(x
∗) :=

{v ∈ H : ⟨v, y − x∗⟩ ≤ 0, for all y ∈ C}.

We end this section by providing some definitions and lemmas that play a role significant in the
convergence results.

For each x ∈ H , the dynamic weight function Ψ : H → ∆M is defined by

Ψ(x) = (σ1(x), σ2(x), . . . , σM (x)),

where the subset ∆M :=

{
(u1, u2, . . . , uM ) ∈ RM : uj ≥ 0, j = 1, 2, . . . ,M, and

M∑
j=1

uj = 1

}
de-

notes the standard simplex.

Definition 2.7. Let Tj : H → H , j = 1, 2, . . . ,M , be mappings. The dynamic weight function Ψ :
H → ∆M is said to be λ-regular with respect to {Tj}Mj=1 if there exists a constant λ > 0 such that for
each x ∈ H , there exists i ∈ {1, 2, . . . ,M} in which

σi(x)∥Tix− x∥2 ≥ λ max
1≤j≤M

∥Tjx− x∥2.

Lemma 2.8. [19] Let {ak} and {ck} be sequences of nonnegative real numbers and {bk} be a sequence
of real numbers satisfying the following conditions:

ak+1 ≤ (1− αk)ak + αkbk + ck, for all k ∈ N ∪ {0},

where {αk} is a sequence in (0, 1). Assume that
∞∑
k=0

ck < ∞. If
∞∑
k=0

αk = ∞ and lim sup
k→∞

bk ≤ 0, then

lim
k→∞

ak = 0.

Lemma 2.9. [18] Let {ak} be a sequence of real numbers. Assume that there exists a subsequence {aki}
of {ak} satisfying aki < aki+1, for all i ∈ N. Then, there exists a nondecreasing sequence {mn} of positive
integers such that lim

n→∞
mn = ∞ and the following results hold:

amn ≤ amn+1 and an ≤ amn+1,

for all (sufficiently large) numbers n ∈ N. Indeed, mn is the largest number k in the set {1, 2, . . . , n}
satisfying

ak < ak+1.

3. Main Results

For a real Hilbert space H , let f : H ×H → R be a bifunction and Tj : H → H , j = 1, 2, . . . ,M ,
be mappings. Throughout this paper, we assume the following conditions:
(A1) f is δ-strongly monotone on H and f(x, x) = 0, for each x ∈ H ;
(A2) f(x, · ) is convex, subdifferentiable, and lower semicontinuous on H , for each fixed x ∈ H ;
(A3) The function x 7→ ∂2f(x, x) is bounded on a bounded subset of H , and satisfies L-Lipschitz,

that is, there exists a constant L > 0 such that

∥u− v∥ ≤ L∥x− y∥,

for each x, y ∈ H and for each u ∈ ∂2f(x, x), v ∈ ∂2f(y, y);
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(A4) {Tj}Mj=1 is a finite family of quasi-nonexpansive mappings with
M⋂
j=1

F (Tj) ̸= ∅ and I − Tj

demiclosed at zero, for each j ∈ {1, 2, . . . ,M};
(A5) The dynamic weight function Ψ : H → ∆M is λ-regular with respect to {Tj}Mj=1.

Remark 3.1. Under the conditions (A1) − (A4), the equilibrium problem over the common fixed point
sets has a unique solution, see the details in [26, 28].

Now, we introduce the following algorithm for solving the equilibrium problem over the common
fixed point sets.

Algorithm 3 Inertial Dynamic Subgradient Algorithm (IDSA)

Initialization. Choose parameters τ ∈ [0, 1), µ ∈
(
0, 2δ

L2

)
, {αk} ⊂ (0, 1)with 0 < inf αk ≤ supαk <

1, {βk} ⊂ (0, 1) such that
∞∑
k=1

βk = ∞, lim
k→∞

βk = 0, and lim
k→∞

εk
βk

= 0. Pick x0, x1 ∈ H and set k = 1.

Step 1. For each k ≥ 1, let

θk =

min

{
τ,

εk
∥xk − xk−1∥

}
, if xk ̸= xk−1,

τ, otherwise.

Choose θk ∈
[
0, θk

]
and compute

wk = xk + θk (xk − xk−1) .

Step 2. Calculate

yk = wk + αk

 M∑
j=1

σj(wk)Tjwk − wk

 .

Step 3. Take zk ∈ ∂2f(yk, yk) and define the next iterate xk+1 as

xk+1 = yk − µβkzk.

Step 4. Put k := k + 1 and return to Step 1.

Remark 3.2. (i) The inertial factor θk in the IDSA performs significantly in improving the conver-
gence properties of the IDSA. It is important to highlight that the choice of inertial factor θk can
affect the numerical performance of the IDSA.

(ii) An example of the dynamic weight function Ψ : H → ∆M in the IDSA is defined by

σj(x) =


∥Tjx− x∥

M∑
j=1

∥Tjx− x∥
, if x ̸∈

M⋂
j=1

F (Tj),

1
M , otherwise.

(3.1)

It can be observed that for each x ∈ H and j ∈ {1, 2, . . . ,M}, σj(x) depends on the quantity

∥Tjx − x∥ over
M∑
j=1

∥Tjx − x∥. This implies that the dynamic weight function defined in (3.1)

exhibits a strong bias for each component j ∈ {1, 2, . . . ,M} that is directly proportional to the
quantity ∥Tjx− x∥, see [23].
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The following lemma provides important relations in the convergence analysis for the IDSA.

Lemma 3.3. Let f : H ×H → R be a bifunction which satisfies the conditions (A1) and (A3). Assume
that 0 < µ < 2δ

L2 and 0 < βk < 1, ∀k ∈ N. Then, for each x, y ∈ H , u ∈ ∂2f(x, x), and v ∈ ∂2f(y, y),
the following result holds:

∥(x− µβku)− (y − µβkv)∥ ≤ (1− ρβk)∥x− y∥, ∀k ∈ N,

where ρ = 1−
√
1− µ(2δ − µL2) ∈ (0, 1].

Proof. The proof of this Lemma follows the technique in [29, Lemma 2.7]. □

We are now in a position to analyze the strong convergence theorem for the IDSA.

Theorem 3.4. Suppose that the conditions (A1)− (A5) hold. Then, the sequence {xk} generated by the
IDSA converges strongly to the unique solution of problem (1.3).

Proof. Let q be the unique solution of problem (1.3). First, we claim that the sequence {xk} is bounded.
By the definition of yk and the properties of the dynamic weight function Ψ, we have

∥yk − q∥2 =

∥∥∥∥∥∥wk + αk

M∑
j=1

σj(wk) (Tjwk − wk)− q

∥∥∥∥∥∥
2

≤ ∥wk − q∥2 + α2
k

M∑
j=1

σj(wk)∥Tjwk − wk∥2 − 2αk

M∑
j=1

σj(wk)⟨wk − q, wk − Tjwk⟩.

This together with the quasi-nonexpansivity of {Tj}Mj=1 yields that

∥yk − q∥2 ≤ ∥wk − q∥2 + α2
k

M∑
j=1

σj(wk)∥Tjwk − wk∥2 − αk

M∑
j=1

σj(wk)∥Tjwk − wk∥2

= ∥wk − q∥2 − αk(1− αk)
M∑
j=1

σj(wk)∥Tjwk − wk∥2. (3.2)

Combining with the condition on the sequence {αk}, we get

∥yk − q∥ ≤ ∥wk − q∥. (3.3)

In addition, from the definition of wk, we obtain that

∥wk − q∥ ≤ ∥xk − q∥+ θk∥xk − xk−1∥

= ∥xk − q∥+ βk

(
θk
βk

∥xk − xk−1∥
)
. (3.4)

Due to the choices of the sequence {θk}, we have
θk
βk

∥xk − xk−1∥ ≤ εk
βk

,

which together with lim
k→∞

εk
βk

= 0 implies that

lim
k→∞

θk
βk

∥xk − xk−1∥ = 0. (3.5)
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Thus, there exists a constantM1 > 0 such that
θk
βk

∥xk − xk−1∥ ≤ M1, (3.6)

for each k ∈ N. Using this one together with the expression (3.4), we get

∥wk − q∥ ≤ ∥xk − q∥+ βkM1. (3.7)

On the other hand, since f(q, y) ≥ 0, ∀y ∈
M⋂
j=1

F (Tj), so q is a minimizer of f(q, ·) over
M⋂
j=1

F (Tj).

It follows from the result of Lemma 2.6 that

0 ∈ ∂2f(q, q) +N M⋂
j=1

F (Tj)
(q).

Then, there exists v ∈ ∂2f(q, q) such that −v ∈ N M⋂
j=1

F (Tj)
(q). This implies that

⟨v, y − q⟩ ≥ 0, ∀y ∈
M⋂
j=1

F (Tj). (3.8)

Furthermore, in view of the definition of xk+1, we have

∥xk+1 − q∥ = ∥yk − µβkzk − q + µβkv − µβkv∥
= ∥(yk − µβkzk)− (q − µβkv)− µβkv∥ (3.9)
≤ ∥(yk − µβkzk)− (q − µβkv)∥+ µβk∥v∥.

This together with the fact of Lemma 3.3 yields that

∥xk+1 − q∥ ≤ (1− ρβk)∥yk − q∥+ µβk∥v∥. (3.10)

Thus, by using the relations (3.3), (3.7), and (3.10), we obtain

∥xk+1 − q∥ ≤ (1− ρβk)(∥xk − q∥+ βkM1) + µβk∥v∥
≤ (1− ρβk)∥xk − q∥+ βkM1 + µβk∥v∥

= (1− ρβk)∥xk − q∥+ ρβk

(
M1 + µ∥v∥

ρ

)
≤ max

{
∥xk − q∥, M1 + µ∥v∥

ρ

}
...

≤ max

{
∥x1 − q∥, M1 + µ∥v∥

ρ

}
.

This implies that the sequence {∥xk − q∥} is bounded. Subsequently, {xk} is a bounded sequence. It
follows from the relations (3.3) and (3.7) that the sequences {wk} and {yk} are also bounded. Combining
with the condition (A3), we get that the sequence {zk} is bounded.

Next, in view of the expression (3.9) and applying Lemma 3.3, one sees that

∥xk+1 − q∥2 = ∥(yk − µβkzk)− (q − µβkv)− µβkv∥2

≤ ∥(yk − µβkzk)− (q − µβkv)∥2 − 2µβk⟨v, xk+1 − q⟩
≤ (1− ρβk)

2∥yk − q∥2 + 2µβk⟨v, q − xk+1⟩
≤ (1− ρβk)∥yk − q∥2 + 2µβk⟨v, q − xk+1⟩. (3.11)
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This together with the properties of the parameter ρ and of the sequence {βk} yields that

∥xk+1 − q∥2 ≤ ∥yk − q∥2 + 2µβk∥v∥∥xk+1 − q∥. (3.12)

Besides, by the definition of wk and the assumptions of the sequence {θk}, we have

∥wk − q∥2 = ∥(xk − q) + θk(xk − xk−1)∥2

≤ (∥xk − q∥+ θk∥xk − xk−1∥)2

≤ ∥xk − q∥2 + θk∥xk − xk−1∥2 + 2θk∥xk − q∥∥xk − xk−1∥
≤ ∥xk − q∥2 + 3M2θk∥xk − xk−1∥ (3.13)

= ∥xk − q∥2 + 3M2βk

(
θk
βk

∥xk − xk−1∥
)
,

whereM2 = sup
k∈N

{∥xk − q∥, ∥xk − xk−1∥}. It follows from the expression (3.6) that

∥wk − q∥2 ≤ ∥xk − q∥2 + 3M1M2βk. (3.14)

So, by utilizing the relations (3.2), (3.12), and (3.14), we get

∥xk+1 − q∥2 ≤ ∥xk − q∥2 + 3M1M2βk − αk(1− αk)
M∑
j=1

σj(wk)∥Tjwk − wk∥2

+2µβk∥v∥∥xk+1 − q∥,

which implies that

αk(1− αk)
M∑
j=1

σj(wk)∥Tjwk − wk∥2 ≤ ∥xk − q∥2 − ∥xk+1 − q∥2 + 3M1M2βk

+2µβk∥v∥∥xk+1 − q∥. (3.15)

On the other hand, by using the relations (3.3), (3.11), and (3.13), we have

∥xk+1 − q∥2 ≤ (1− ρβk)
(
∥xk − q∥2 + 3M2θk∥xk − xk−1∥

)
+ 2µβk⟨v, q − xk+1⟩

≤ (1− ρβk)∥xk − q∥2 + 3M2θk∥xk − xk−1∥+ 2µβk⟨v, q − xk+1⟩

= (1− ρβk)∥xk − q∥2 + ρβk

(
3M2θk
ρβk

∥xk − xk−1∥+
2µ

ρ
⟨v, q − xk+1⟩

)
. (3.16)

Now, we are in a position to display that the sequence {xk} converges strongly to q. The following
two possible cases are considered.

Case 1. Suppose that there exists k0 ∈ N such that ∥xk+1 − q∥ ≤ ∥xk − q∥, for each k ≥ k0. This
means that {∥xk − q∥}k≥k0 is a nonincreasing sequence. Combining with the boundness property of
{∥xk − q∥}, we can assert that the limit of ∥xk − q∥ exists. This together with the expression (3.15),
and lim

k→∞
βk = 0 yields

lim
k→∞

αk(1− αk)
M∑
j=1

σj(wk)∥Tjwk − wk∥2 = 0.

It follows from the properties of the sequence {αk} that

lim
k→∞

M∑
j=1

σj(wk)∥Tjwk − wk∥2 = 0. (3.17)
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By the λ-regularity of the dynamic weight function Ψ, one has
M∑
j=1

σj(wk)∥Tjwk − wk∥2 ≥ λ max
1≤j≤M

∥Tjwk − wk∥2.

Using this one together with (3.17), we get

0 = lim
k→∞

M∑
j=1

σj(wk)∥Tjwk − wk∥2 ≥ λ lim
k→∞

max
1≤j≤M

∥Tjwk − wk∥2 ≥ 0,

which leads to

lim
k→∞

∥Tjwk − wk∥ = 0, (3.18)

for each j = 1, 2, . . . ,M . Besides, by the definition of yk and (3.17), we obtain

lim
k→∞

∥yk − wk∥ ≤ lim
k→∞

αk

M∑
j=1

σj(wk)∥Tjwk − wk∥ = 0,

which implies that

lim
k→∞

∥yk − wk∥ = 0. (3.19)

On the other hand, by the definition of xk+1, the boundedness of the sequence {zk}, and the fact
that lim

k→∞
βk = 0, we have

lim
k→∞

∥xk+1 − yk∥ = lim
k→∞

µβk∥zk∥ = 0. (3.20)

Additionally, in view of the definition of wk and (3.5), one sees that

lim
k→∞

∥wk − xk∥ = lim
k→∞

βk

(
θk
βk

∥xk − xk−1∥
)

= 0. (3.21)

Since ∥xk+1 − xk∥ ≤ ∥xk+1 − yk∥+ ∥yk − wk∥+ ∥wk − xk∥, it follows from (3.19), (3.20), and (3.21)
that

lim
k→∞

∥xk+1 − xk∥ = 0. (3.22)

Now, let p∗ ∈ ωw(xk) and {xkn} be a subsequence of {xk} which converges weakly to p∗. This
together with (3.21) yields that wkn ⇀ p∗, as n → ∞. Thus, by using (3.18) and the demiclosedness

at zero of each I − Tj , we have p∗ ∈ F (Tj), j = 1, 2, . . . ,M , and so p∗ ∈
M⋂
j=1

F (Tj). It follows from

(3.22) that

lim sup
k→∞

⟨v, q − xk+1⟩ = lim sup
k→∞

⟨v, q − xk⟩ = lim
n→∞

⟨v, q − xkn⟩ = ⟨v, q − p∗⟩. (3.23)

Combining with the fact (3.8), we obtain

lim sup
n→∞

⟨v, q − xkn+1⟩ ≤ 0. (3.24)

Hence, by using (3.5), (3.16), (3.24), and invoking Lemma 2.8, we have

lim
k→∞

∥xk − q∥ = 0. (3.25)

Case 2. Suppose that there exists a subsequence {∥xki − q∥} of {∥xk − q∥} such that

∥xki − q∥ < ∥xki+1 − q∥, ∀i ∈ N.
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According to Lemma 2.9, there exists a nondecreasing sequence {mn} ⊂ N such that lim
n→∞

mn = ∞,
and

∥xmn − q∥ ≤ ∥xmn+1 − q∥ and ∥xn − q∥ ≤ ∥xmn+1 − q∥, ∀n ∈ N. (3.26)

This together with the expression (3.15) yields that

αmn(1− αmn)
M∑
j=1

σj(wmn)∥Tjwmn − wmn∥2 ≤ ∥xmn − q∥2 − ∥xmn+1 − q∥2 + 3M1M2βmn

+2µβmn∥v∥∥xmn+1 − q∥
≤ 3M1M2βmn + 2µβmn∥v∥∥xmn+1 − q∥.

Following the line of proof in Case 1, we can show that

lim
n→∞

∥xmn+1 − xmn∥ = 0, lim
n→∞

∥xmn+1 − ymn∥ = 0, lim
n→∞

∥ymn − wmn∥ = 0, (3.27)

lim
n→∞

∥wmn − xmn∥ = 0, lim
n→∞

∥Tjwmn − wmn∥ = 0, j = 1, 2, . . . ,M, (3.28)

and

lim sup
n→∞

⟨v, q − xmn+1⟩ = ⟨v, q − p∗⟩ ≤ 0, (3.29)

where p∗ ∈
M⋂
j=1

F (Tj). Due to the expression (3.16), one has

∥xmn+1 − q∥2 ≤ (1− ρβmn)∥xmn − q∥2 + ρβmn

(
3M2θmn

ρβmn

∥xmn
− xmn−1∥+

2µ

ρ
⟨v, q − xmn+1⟩

)
.

It follows from the expression (3.26) that

∥xmn+1 − q∥2 ≤ (1− ρβmn
)∥xmn+1 − q∥2 + ρβmn

(
3M2θmn

ρβmn

∥xmn
− xmn−1∥+

2µ

ρ
⟨v, q − xmn+1⟩

)
.

Using this one together with the expressions (3.26) again, we obtain

∥xn − q∥2 ≤ 3M2θmn

ρβmn

∥xmn − xmn−1∥+
2µ

ρ
⟨v, q − xmn+1⟩.

Hence, by using (3.5) and (3.29), we have

lim sup
n→∞

∥xn − q∥2 ≤ 0.

Therefore, we conclude that the sequence {xn} converges strongly to q. This completes the proof. □

Remark 3.5. The proof of Theorem 3.4 reveals a key mechanism that underpins the convergence behavior
of the proposed algorithm. The strong convergence is primarily attributable to the strong–monotonicity
property of the bifunction. As shown in Lemma 3.3, the strong–monotonicity constant δ directly determines
the contraction factor ρ in the one-step error bound

∥xk+1 − q∥ ≤ (1− ρβk) ∥xk − q∥+O(βk).

Hence, a larger δ yields a smaller contraction coefficient (1 − ρβk), ensuring faster convergence to the
unique solution. This theoretical insight forms a solid foundation for the algorithm’s convergence properties
and motivates the numerical experiments that follow, which will illustrate the practical impact of these
mechanisms.
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4. Numerical Experiment

In this section, we perform a numerical experiment to support Theorem 3.4. All the numerical com-
putations are carried out under Matlab R2024b running on an Apple M1 with 8.00 GB RAM.

Now, letH = Rn be an n-dimensional vector space equipped with the Euclidean norm. We consider
the bifunction f defined by

f(x, y) = ⟨Ax+By, y − x⟩, ∀x, y ∈ Rn,

in which A and B are positive definite matrices formed by
B = QTQ+ nIn,

and
A = B +RTR+ nIn,

where Q, R are n × n matrices and In is the identity n × n matrix. Note that the bifunction f is n-
strongly monotone, see [29]. Besides, we have ∂2f(x, x) = {(A+B)x}, and ∥(A+B)x−(A+B)y∥ ≤
∥A+B∥2∥x− y∥, ∀x, y ∈ Rn, where ∥A+B∥2 is the spectral norm of the matrix A+B.

Next, for the constrained boxes Cj , j = 1, 2, . . . ,M , given by
Cj = {x ∈ Rn : −dj ≤ xi ≤ dj , ∀i = 1, 2, . . . , n}, j = 1, 2, . . . ,M,

where dj are the positive real numbers, we focus on the mappings Tj , j = 1, 2, . . . ,M , which are
provided as follows:

Tj = PCj , j = 1, 2, . . . ,M.

It follows that for each j = 1, 2, . . . ,M , the mapping Tj is quasi-nonexpansive and so F (Tj) = Cj .
Additionally, we take the dynamic weight function Ψ : H → ∆M is defined by

Ψ(x) = (σ1(x), σ2(x), . . . , σM (x)),

where

σj(x) =


∥Tjx− x∥

M∑
j=1

∥Tjx− x∥
, if x ̸∈

M⋂
j=1

F (Tj),

1
M , otherwise.

Thus, the dynamic weight function Ψ is regular with respect to the family {Tj}Mj=1, see [7].
Here, the numerical experiment is regarded under the following control parameters setting: τ = 0.8,

µ = 2(n−0.9)
∥A+B∥22

, αk = 0.99 − 1
(k+1) , βk = 1

k+1 , and εk = 1
(k+1)2

for the IDSA. For the STECA, we take
µ = 1, αk = 0.2

(k+1)0.4
, and βk = 0.1

(k+1)0.6
. Besides, the matrices Q and R were randomly chosen from

the interval (0, 1) and the positive real numbers dj , j = 1, 2, . . . ,M , were randomly chosen from
the interval (0, 5). The initial points x0 = x1 ∈ Rn were randomly chosen from the interval [−5, 5].
The IDSA was tested along with the STECA by applying the stopping criteria as ∥xk+1−xk∥

∥xk∥+1 < 10−4.
Observe that the unique solution of problem (1.3) is q = 0.

Utilizing independently randomized initial points in each trial, we conducted experiments to evaluate
the effectiveness of each set of parameters over 10 trials in order to figure out the optimum values
of the parameter θk for various values n and M . The presented outcomes demonstrate the average
effectiveness across those 10 trials.

The data in Table 1 confirm that IDSA dramatically outperforms STECA across all tested problem
sizes (n = 5, 10, 50, 100; M = 5, 10, 50, 100). For a fixed dimension, increasing the number of box–
constraints M consistently reduces the iteration count but increases total CPU time: for example, at
n = 50 the average iterations drop from 41 (M = 5) to 19 (M = 100), while CPU time rises from 0.10s
to 0.54s. Likewise, for a fixedM , raising the dimension n yields steep reductions in both iterations (e.g.,
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Table 1. Influence of parameter θk for different sizes of n andM

IDSA θk = 0 θk = 0.25θk θk = 0.5θk θk = 0.75θk θk = θk STECA
n M Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time
5 5 472 0.42 467 0.38 454 0.38 448 0.38 439 0.36 2658 3.92

10 372 0.64 367 0.64 361 0.64 354 0.62 344 0.62 2814 9.00
50 173 1.46 172 1.45 170 1.45 160 1.32 151 1.29 4406 69.93

100 85 1.51 85 1.51 83 1.45 79 1.38 76 1.38 4724 146.66
10 5 378 0.30 380 0.30 383 0.30 384 0.31 386 0.33 5850 8.70

10 213 0.38 219 0.39 223 0.39 223 0.39 224 0.39 6090 18.37
50 109 1.02 117 1.04 124 1.11 127 1.18 127 1.18 7942 127.95

100 93 1.78 99 1.84 108 2.06 113 2.23 114 2.26 9564 337.58
50 5 41 0.10 46 0.10 52 0.10 58 0.11 69 0.14 711 1.91

10 37 0.15 42 0.15 49 0.16 57 0.18 65 0.21 759 3.79
50 27 0.40 31 0.42 37 0.49 48 0.63 65 0.82 793 19.09

100 19 0.54 19 0.54 22 0.57 28 0.74 46 1.12 803 38.82
100 5 22 0.10 26 0.10 32 0.12 39 0.12 50 0.13 372 1.74

10 17 0.11 19 0.11 23 0.13 30 0.16 45 0.21 374 3.34
50 18 0.40 18 0.40 19 0.41 25 0.53 44 0.87 378 15.52

100 19 0.74 19 0.74 18 0.74 24 0.94 40 1.49 381 30.98

at M = 5 from 472 iterations when n = 5 down to 22 when n = 100) and runtime. The inertial factor
θk exhibits a dimension-dependent effect: when n = 5, larger θk accelerates convergence, whereas for
n ≥ 10 the best performance is obtained by omitting inertia (θk = 0). Overall, IDSA requires between
70–98% fewer iterations and achieves up to 99% shorter CPU time compared to STECA.

Remark 4.1. Two fundamental properties underpin these observations from the above example and apply
broadly to projection–based methods for strongly monotone equilibrium problems:

(1) Stronger contraction via increased monotonicity: In our example the bifunction’s strong-monotoni-
city constant δ equals the dimension n. As discussed in Remark 3.5, larger n yields a strictly smaller
contraction coefficient (1− ρβk), and consequently fewer iterations are required.

(2) Trade-off between iterations and CPU time as M increases: Adding non-redundant convex con-
straints shrinks the intersection set and reduces the initial error ∥x0 − q∥, thereby lowering the
number of iterations needed for convergence. However, each iteration’s computational cost grows
approximately asO(nM). Consequently, for a fixed dimensionn, total CPU time actually increases
with M even though the algorithm converges in fewer steps, because the per-iteration workload
outweighs the savings from fewer iterations.

5. Conclusion

In this work, we introduced an Inertial Dynamic Subgradient Algorithm (IDSA) for solving strongly
monotone equilibrium problems over the common fixed point sets of quasi–nonexpansive mappings in
a real Hilbert space. By integrating inertial techniques with subgradient methods and dynamic weight-
ing, we established strong convergence of the generated sequence to the unique solution under appro-
priate conditions. Our numerical experiments demonstrated that the IDSA dramatically outperforms
the benchmark STECA across awide range of problem dimensions and numbers of box constraints, with
significant reductions in both iteration counts and CPU time. Notably, for fixed dimensions, increasing
the number of constraints consistently decreases the computational burden, and for fixed numbers of
constraints, larger dimensions yield stronger contraction properties that accelerate convergence. The
experiments also revealed that the inertial factor θk plays a critical role, as larger values are benefi-
cial in low dimensional settings, while omitting inertia (i.e., θk = 0) leads to better performance in
higher–dimensional cases.
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Future research can build on these promising results in several ways. One direction is to develop
adaptive parameter tuning schemes that adjust the inertial factor and other control parameters dynam-
ically based on real–time problem characteristics, potentially further improving performance. Addi-
tionally, extending the proposed algorithm to handle more general classes of equilibrium problems,
including those with nonsmooth or nonconvex structures, would be a valuable contribution. Exploring
distributed and parallel implementations of the IDSA could also enhance its scalability for large–scale
or multi–agent systems, while applying the method to real world problems in economics, engineering,
and data science would further validate its practical utility. Overall, the IDSA represents a significant
advancement in the numerical solution of equilibrium problems, and these future research directions
promise to broaden its applicability and robustness.
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