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Abstract. This paper introduces a gradient-free method for solving a class of nonsmooth nonconvex
multiobjective optimization problems. Under standard regularity conditions, we establish a non-asymptotic
convergence rate of the proposed algorithm, where optimality is quantified in terms of (δ, ϵ)-Goldstein
stationarity measure. Numerical experiments are presented to demonstrate the effectiveness of the pro-
posed method.
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1. Introduction

Multiobjective optimization is an optimization problem that involves the simultaneous optimization
of multiple objective functions. It has wide applications in fields such as engineering, economic man-
agement, traffic planning, and machine learning [4, 9, 19]. These problems are called multiobjective
optimization problems (MOPs) and the objective functions are conflicting, and since there is no single
point that can optimize all objective functions at once, the concept of optimality is replaced by the
concept of Pareto optimality. Due to this, the numerical computation of solutions to MOPs is more
challenging. In addition, there are numerous applications involving nonsmooth objectives, such as fi-
nancial risk control in asset portfolios or customer satisfaction optimization in service/supply chain
systems, further complicating the problem.

Multiobjective optimization and nonsmooth optimization separately, there exist a large number of
solution methods. Classical methods for solving MOPs include heuristic methods [7, 5] and scalariza-
tion methods [14]. The heuristic methods suffer from a lack of theoretical convergence guarantees and
difficulties in scaling to large-scale optimization problems. The scalarizationmethods convert theMOPs
into a parameterized scalar one, but it is difficult to determine the scalarization parameters of each func-
tion in advance. For nonsmooth single-objective optimization, standard methods include subgradient
methods [17], bundle methods [11], and gradient sampling methods [3]. For nonsmooth multiobjec-
tive optimization, the literature is a lot more scarce. The subgradient method was generalized to the
multiobjective optimization in [1, 6], but they acknowledged computational inefficiency limiting its
real-world applicability. The proximal point method was generalized to convex vector optimization
problems in [2], where differentiability of the objectives is not required. The multiobjective version of
the proximal bundle method was proposed in [13]. In [16], the MultiSQP-GS method was proposed for
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constrained nonsmooth multiobjective optimization, integrating a Sequential Quadratic Programming
(SQP) framework with the gradient sampling technique. In [10], an efficient descent method was intro-
duced for unconstrained locally Lipschitz multiobjective optimization problems, combining theoretical
computations of descent directions for nonsmooth objectives with practical subdifferential approxima-
tion techniques; [18] extends this framework from finite-dimensional to general Hilbert spaces.

It is worth noting that these methods either do not consider convergence rate analysis or have a
slow convergence rate. Motivated by the works in [8, 12, 15], we propose the gradient-free method
for solving a class of nonsmooth nonconvex multiobjective optimization problems. Under some mild
conditions, we establish the convergence rate of the algorithm where the optimality gap is measured
in terms of (δ, ϵ)-Goldstein stationary point. Numerical experiments are presented to demonstrate the
effectiveness of the proposed method.

This paper is organized as follows. Section 2 establishes foundational definitions. Section 3 develops
the randomized smoothing method. Section 4 rigorously analyzes the convergence properties of our
method. Finally, Section 5 presents numerical experiments.

2. Preliminaries

Consider the following multiobjective optimization problem

min
x∈Rn

F (x) := (F1(x), · · · , Fm(x)), (2.1)

where Fi : Rn → R, i = 1, · · · ,m, are Lipschitz continuous functions.
The optimum for (2.1) is usually given by Pareto optimality: for a point x∗ ∈ Rn, x∗ is a Pareto

optimal solution of (2.1) if there exists no x ∈ Rn such that Fi(x) ≤ Fi(x
∗) for all i = 1, · · · ,m

and Fj(x) < Fj(x
∗) for at least one index j. In practice, to check whether a given point is Pareto

optimal, we need optimality conditions. In the smooth case, there are the well-known Karush–Kuhn–
Tucker (KKT) conditions [14], which are based on the gradients of the objective functions. In case
the objective functions are merely Lipschitz continuous, the KKT conditions can be generalized using
the concept of subdifferentials. In the following, we recall the required definitions and results from
nonsmooth analysis.

Definition 2.1. For i = 1, · · · ,m, letΩi ⊂ Rn be the set of points where Fi is not differentiable. Then,

∂Fi(x) := conv ({ξ ∈ Rn : ∃{xj}j ∈ Rn \ Ωi with xj → x and ∇Fi(xj) → ξ for j → ∞})

is the (Clarke) subdifferential of Fi in x.

By employing the subdifferential, a necessary optimality condition can be formulated for Lipschitz-
continuous MOPs.

Theorem 2.2. [10] Let x ∈ Rn be Pareto optimal. Then,

0 ∈ conv

(
k⋃

i=1

∂Fi(x)

)
.

3. Randomized Smoothing

It is noted that the functions Fi, i = 1, · · · ,m, in problem (2.1) are nonsmooth. To address this, the
randomized smoothing method is employed to approximate the original problem, thereby providing a
foundation for developing gradient-free methods. Letting P denote a uniform distribution over the unit
ball in the ℓ2-norm, define F δ

i (x) = Eu∼P[Fi(x + δu)]. The smoothed functions F δ
i (i = 1, · · · ,m)

then exhibit the following properties.
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Lemma 3.1. [8] Suppose that for each i = 1, · · · ,m, Fi is L-Lipschitz. Then, we have
(i) |F δ

i (x)− Fi(x)| ≤ δL;
(ii) F δ

i is differentiable with the cL
√
n

δ -Lipschitz gradient where c > 0 is a constant and n ≥ 1 is the
problem dimension.

In order to ensure convergence of the algorithm to an approximate stationary point in finite-time,
we introduce the following definition.

Definition 3.2. Let δ ≥ 0, x ∈ Rn,Bδ(x) := {y ∈ Rn : ∥y − x∥ ≤ δ} and i ∈ {1, · · · ,m}. Then,

∂δFi(x) := conv

 ⋃
y∈Bδ(x)

∂Fi(y)


is the (Goldstein) δ-subdifferential of Fi in x.
Note that for each i = 1, · · · ,m, ∂δFi(x) = ∂0Fi(x) and ∂Fi(x) ⊂ ∂δFi(x). For δ ≥ 0, we define

for the multiobjective setting

∂δF (x) := conv
(

m⋃
i=1

∂δFi(x)

)
.

The Goldstein subdifferential of Fi at x is defined as the convex hull of the union of all generalized
gradients at points within a δ-ball centered at x. Therefore, we define the (δ, ϵ)-Goldstein stationary
points for (2.1) as follows, which serve as an optimality condition for general nonsmooth nonconvex
multiobjective optimization problems.

Definition 3.3. [10] x ∈ Rn is a (δ, ϵ)-Goldstein stationary point if the following statement holds:

min {∥g∥ : g ∈ ∂δF (x)} ≤ ϵ.

Lemma 3.4. [12] Suppose that for each i = 1, · · · ,m, Fi is L-Lipschitz. Then, we have

∇F δ
i (x) ∈ ∂δFi(x).

4. Convergence Analysis

In this section, we first present the gradient-freemethod for solving (2.1), which is given inAlgorithm
1. We subsequently analyze the non-asymptotic convergence properties of the proposed method.

Lemma 4.1. Suppose that for each i = 1, · · · ,m, Fi is L-Lipschitz and let {gki }
K−1
k=0 and {xk}K−1

k=0 be
generated by Algorithm 1. Then, we have

E[gki |xk] = ∇F δ
i (x

k) and E[∥gki −∇F δ
i (x

k)∥2|xk] ≤ 16
√
2πnL2

Nk
.

Proof. By the definition of gki and the symmetry of the distribution of wk
j , we have

E[gki |xk] = E

 n

2Nkδ

Nk∑
j=1

(
Fi(x

k + δwk
j )− Fi(x

k − δwk
j )
)
wk
j |xk


=

1

2

E

 n

Nkδ

Nk∑
j=1

Fi(x
k + δwk

j )w
k
j |xk

+ E

 n

Nkδ

Nk∑
j=1

Fi(x
k + δ(−wk

j ))(−wk
j )|xk


=

1

2
(∇F δ

i (x
k) +∇F δ

i (x
k)) = ∇F δ

i (x
k).
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Algorithm 1: Gradient-Free Method for (2.1)
Input: Initial point x0 ∈ Rn, stepsize η > 0, problem dimension n ≥ 1, smoothing parameter

δ, batch size Nk and iteration numberK ≥ 1.
1 for k = 0, · · · ,K − 1 do
2 Sample wk ∈ Rn uniformly from a unit sphere in Rn.

3 Compute gki = n
2Nkδ

Nk∑
j=1

(
Fi(x

k + δwk
j )− Fi(x

k − δwk
j )
)
wk
j .

4 Compute λk ∈ Rm by solving

min
λ∈Rm

∥∥∥∥∥
m∑
i=1

λig
k
i

∥∥∥∥∥
2

s.t. λ ≥ 0 and

m∑
i=1

λi = 1.

5 Denote dk =
∑m

i=1 λ
k
i g

k
i and compute xk+1 = xk − ηdk.

6 end
Output: xR, where R ∈ {0, · · · ,K − 1} is uniformly sampled.

It remains to show that E[∥gki −∇F δ
i (x

k)∥2|xk] ≤ 16
√
2πnL2

Nk
. By the definition of gki , we have zyc

E[∥gki −∇F δ
i (x

k)∥2|xk]

= E

∥∥∥∥∥∥ n

2Nkδ

Nk∑
j=1

(
Fi(x

k + δwk
j )− Fi(x

k − δwk
j )
)
wk
j −∇F δ

i (x
k)

∥∥∥∥∥∥
2

|xk


=
1

N2
k

E

∥∥∥∥∥∥
Nk∑
j=1

( n

2δ
(Fi(x

k + δwk
j )− Fi(x

k − δwk
j ))w

k
j )−∇F δ

i (x
k)
)∥∥∥∥∥∥

2

|xk


=
1

N2
k

Nk∑
j=1

E
[∥∥∥ n

2δ
(Fi(x

k + δwk
j )− Fi(x

k − δwk
j ))w

k
j )−∇F δ

i (x
k)
∥∥∥2 |xk]

≤ 1

N2
k

Nk∑
j=1

16
√
2πnL2 =

16
√
2πnL2

Nk
,

where the inequality follows from Lemma D.1 in [12]. □

Theorem 4.2. Suppose that for each i = 1, · · · ,m, Fi is L-Lipschitz and let {xk}K−1
k=0 be generated by

Algorithm 1. Then, we have

1

K

K−1∑
k=0

E[∥
m∑
i=1

λk
i∇F δ

i (x
k)∥2] ≤

(
32
√
2πnL2

K
+

64
√
2πnL2

Kη

)
K−1∑
k=0

1

Nk
+

8(F δ
i (x

0))− E[F δ
i (x

K)]

Kη
.

(4.1)

Proof. By Lemma 3.1, we have F δ
i is differentiable and cL

√
n

δ -Lipschitz gradient, where c > 0 is a
constant. This implies

F δ
i (x

k+1) ≤ F δ
i (x

k)− η⟨∇F δ
i (x

k), dk⟩+
cL

√
d

2δ
η2∥dk∥2.
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Taking the expectation of both sides conditioned on xk, we have

E[F δ
i (x

k+1)|xk] ≤F δ
i (x

k)− ηE[⟨∇F δ
i (x

k), dk⟩|xk] +
cL

√
n

2δ
η2E[∥dk∥2|xk]

=F δ
i (x

k)− ηE[⟨∇F δ
i (x

k)− gki , dk⟩|xk]− ηE[⟨gki , dk⟩|xk] +
cL

√
n

2δ
η2E[∥dk∥2|xk]

≤F δ
i (x

k) +
1

2
E[∥∇F δ

i (x
k)− gki ∥2|xk] +

1

2
η2E[∥dk∥2|xk]− ηE[∥dk∥2|xk]

+
cL

√
n

2δ
η2E[∥dk∥2|xk]

≤F δ
i (x

k) +
8
√
2πnL2

Nk
− (η − 1

2
η2 − cL

√
nη2

2δ
)E[∥dk∥2|xk],

where the second inequality follows from Young inequality and ⟨gki , dk⟩ ≥ ∥dk∥2. By setting 1− 1
2η−

cL
√
dη

2δ ≥ 1
4 , i.e., η ≤ 3δ

2(δ+cL
√
d)
. Therefore, we have

η

4
E[∥dk∥2|xk] ≤ −E[F δ

i (x
k+1)|xk] + F δ

i (x
k) +

8
√
2πnL2

Nk
.

Taking the expectation of both sides and summing up the above inequality over k = 0, · · · ,K − 1
yields that

1

K

K−1∑
k=0

E[∥dk∥2] ≤
4(F δ

i (x
0))− E[F δ

i (x
K)]

Kη
+

32
√
2πnL2

Kη

K−1∑
k=0

1

Nk
.

Since

∥
m∑
i=1

λk
i∇F δ

i (x
k)∥2 ≤ 2∥

m∑
i=1

λk
i∇F δ

i (x
k)− dk∥2 + 2∥dk∥2

≤ 2

m∑
i=1

λk
i ∥∇F δ

i (x
k)− gki ∥2 + 2∥dk∥2,

thus, we have

1

K

K−1∑
k=0

E[∥
m∑
i=1

λk
i∇F δ

i (x
k)∥2] ≤ 32

√
2πnL2

K

K−1∑
k=0

1

Nk
+

8(F δ
i (x

0))− E[F δ
i (x

K)]

Kη

+
64
√
2πnL2

Kη

K−1∑
k=0

1

Nk
,

which concludes the proof. □

In the following theorem, we establish the convergence rate of the proposed algorithm.

Theorem 4.3. Suppose that for each i = 1, · · · ,m, Fi is L-Lipschitz and let {xk}K−1
k=0 be generated by

Algorithm 1. For each i = 1, · · · ,m, assume that Fi has a lower bound Fmin
i and

∞∑
k=0

1
Nk

≤ M with

a constant M > 0. Let Fmin = min
i=1,··· ,m

Fmin
i and Fmax(x0) = max

i=1,··· ,m
Fi(x0), where x0 is a given

initial point. Then, we have

E
[
min{∥g∥ : g ∈ ∂δF (xR)}

]
≤
(
(81nL2 + 161nL2/η)M + 8(Fmax(x0)− Fmin + δL)/η

) 1
2

√
K

.



162 Y. ZHAO, C. L. YOU, W. CHEN

Proof. By Lemma 3.1, we have Fi(x0) ≤ F δ
i (x0) ≤ Fi(x0)+δL. In addition, we see from the definition

ofF δ
i thatF δ

i (x) ≥ infx∈Rn Fi(x) for any x ∈ Rn and thusE[F δ
i (x

K)] ≥ infx∈Rn Fi(x), which implies
that

F δ
i (x

0)− E[F δ
i (x

K)] ≤ Fi(x0)− Fmin + δL ≤ Fmax(x0)− Fmin + δL.

Therefore, it follows from (4.1) that we have

1

K

K−1∑
k=0

E[∥
m∑
i=1

λk
i∇F δ

i (x
k)∥2] ≤

(
32
√
2πnL2

K
+

64
√
2πnL2

Kη

)
K−1∑
k=0

1

Nk
+

8(Fmax(x0)− Fmin + δL)

Kη

≤ (81nL2 + 161nL2/η)M

K
+

8(Fmax(x0)− Fmin + δL)

Kη
.

Since
1

K

K−1∑
k=0

E[min
λ∈△

∥
m∑
i=1

λi∇F δ
i (x

k)∥2] ≤ 1

K

K−1∑
k=0

E[∥
m∑
i=1

λk
i∇F δ

i (x
k)∥2]

and the random count R ∈ {0, 1, · · · , T − 1} is uniformly sampled, we have

E[min
λ∈△

∥
m∑
i=1

λi∇F δ
i (x

R)∥2] = 1

K

K−1∑
k=0

E[min
λ∈△

∥
m∑
i=1

λi∇F δ
i (x

k)∥2] (4.2)

≤ (81dL2 + 161dL2/η)M

K
+

8(Fmax(x0)− Fmin + δL)

Kη
. (4.3)

By Lemma 3.4, we have ∇F δ
i (x

R) ∈ ∂δFi(x
R) for each i = 1, · · · ,m, which means that

conv
(

m⋃
i=1

∇F δ
i (x

R)

)
⊂ ∂δF (xR).

This together with (4.2) implies that

E
[
min{∥g∥ : g ∈ ∂δF (xR)}

]
≤ E[min

λ∈△
∥

m∑
i=1

λi∇F δ
i (x

R)∥]

≤
(
(81nL2 + 161nL2/η)M + 8(Fmax(x0)− Fmin + δL)/η

) 1
2

√
K

.

This completes the proof. □

Theorem 4.3 establishes a convergence rate of O(n
1
2 ϵ−1) for a randomized gradient-based method,

measured in terms of (δ, ϵ)-Goldstein stationarity for (2.1).

5. Numerical Experiments

In this section, we report the results of computational experiments, showing the performance of the
proposed algorithm. The code is written in Matlab software and run on a computer with the following
characteristics: Intel(R) Core(TM) i7-11390H 3.40GHz, 16 GB RAM. In order to solve the subproblem in
the step 4 of Algorithm 1, the Matlab solver quadprog is employed.

We consider two test problems in the experiments, which can be found in [10]. The first problem is
(2.1) with m = 2, n = 2, and

F (x) =

(
max{x21 + (x2 − 1)2 + x2 − 1,−x21 − (x2 − 1)2 + x2 + 1}

−x1 + 2(x21 + x22 − 1) + 1.75|x21 + x22 − 1|

)⊤
.

The second problem is the sparse optimization problemwith an ℓ1 penalty term, which can be described
as

min
x∈Rn

G(x) + λ∥x∥1, (5.1)
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whereG : Rn → R is a locally Lipschitz continuous function and λ ≥ 0 is a regular parameter. Gebken
and Peitz [10] reformulated this problem (5.1) as a bi-objective optimization problem with

F1(x) = G(x)

and
F2(x) = ∥x∥1,

where

G(x) =

(
x1 −

1

4

)2

+

(
x2 −

1

2

)2

+ (x3 − 1)4 − 1

2

(
x3 −

1

4

)3

.

Owing to the nonsmooth nature of F2, the resulting MOP is inherently nonsmooth. For brevity, we
refer to these two problems as TP1 and TP2, respectively.

Considering that Algorithm 1 is a single-point iterative method, we adopt a multi-start strategy to
obtain an effective approximation of the true Pareto front. Specifically, Algorithm 1 uses 100 initial
points on each test problem, which are selected uniformly from the given box. For TP1, the box is set
as [−1, 1]2, while for TP2, it is [0, 0, 0] × [1, 1, 2]. The parameters for Algorithm 1 are set as follows:
η = 0.008, δ = 0.005, K = 1000, and Nk = ⌈0.9984−(k+1)⌉.

For each problem, we discretize the above-mentioned box into fine grid points and plot all image
points. Thus, it provides a good representation of the image space of F . Figure 1 gives the image points
and the final solutions obtained by Algorithm 1. In this figure, the gray points mean the image points,
while the red circle points represent the final solutions. As can be seen, the proposed algorithm is
capable of satisfactorily estimating the Pareto front of the considered problems.

(a) TP1 (b) TP2

Figure 1. The image points and the final solutions obtained by Algorithm 1

6. Conclusion

In this paper, we proposed a gradient-free method for solving multiobjective optimization problems
with locally Lipschitz continuous objective functions. We established the convergence rate of the pro-
posed algorithm and demonstrated its performance through numerical experiments on two benchmark
problems.
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