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Abstract. This study aims to optimize waste collection processes in the urban district of Eskisehir, Turkey.
Increasing urbanization and population density necessitate more efficient and sustainable management of mu-
nicipal waste collection activities. The study seeks to develop a mathematical model for this problem in the
form of a vehicle routing problem (VRP) and a region-specific solution, by utilizing data such as neighborhood-
level waste generation volumes, container fill rates, and vehicle capacities. The objective of this research is
to develop an optimized routing framework focused on minimizing total operational costs, fuel usage, and
the number of deployed vehicles. In alignment with principles of environmental sustainability, the paper
aims to provide a practical and adaptable model for local governments. The research incorporates a hybrid
framework that combines Genetic Algorithm and Tabu Search—two metaheuristic techniques widely used in
the literature. The effectiveness of the proposed hybrid approach is evaluated through computational exper-
iments on the case study, with a comparative analysis of results obtained using OR-Tools. The outcomes of
this study aim to offer an innovative perspective on urban waste management and contribute meaningfully
to the academic literature.
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1. Introduction

The Vehicle Routing Problem (VRP) is a prominent combinatorial optimization problem that focuses on
determining the most cost-effective routes for a fleet of vehicles [9]. In typical VRP scenarios, vehicles start
from a central depot and are assigned to serve a group of customers while considering vehicle capacity
constraints and customer demand. Since the foundational study by Dantzig and Ramser [9], VRP has at-
tracted significant attention in the research community. Various solution approaches have been developed
over time, generally categorized into heuristics, metaheuristics, and exact methods, each suited to different
problem variants such as open VRP [25], clustered VRP, VRP with time windows, green VRP, and more.
Hybrid solution methods have also been widely applied, yielding important results [2].

The Waste Collection Vehicle Routing Problem (WCVRP) has gained growing attention in recent years
due to the increasing need for efficient and sustainable waste management solutions. Researchers have
proposed diverse methodologies to optimize waste collection routes, considering factors such as environ-
mental impact, operational costs, and service quality. Efficient waste collection and transportation play a
crucial role in enhancing overall waste management performance and promoting sustainable development
[32].
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The efficiency of urban waste collection has become a critical concern for local governments, particu-
larly with the challenges posed by rapid urbanization and population growth. Today, municipalities are
under increasing pressure to optimize their waste collection operations in line with efficient resource uti-
lization and environmental sustainability principles. In densely populated areas, poorly designed routes
often result in increased operational costs and elevated carbon emissions, posing both economic and en-
vironmental challenges. To address this, effective optimization techniques such as genetic algorithms and
tabu search, have been adapted in this study with sensitivity to environmental criteria.

The waste collection process inherently reflects the structure of the VRP. In municipal applications, ve-
hicles depart from a central depot, visit geographically distributed locations (e.g., neighborhoods or bins),
and return to the depot, while respecting constraints such as vehicle capacity, service time windows, and
route length. This setup closely mirrors the VRP framework, where the objective is to minimize total
travel cost or distance while effectively utilizing limited vehicle resources. As a result, VRP-based mod-
els have become essential tools in optimizing waste collection strategies to reduce costs, fuel consump-
tion, and environmental impacts. Minimizing cost, distance, or travel time—common objectives in routing
problems—also dominate in WCVRP studies. Conversely, efforts to maximize profit, revenue, or collected
waste volume remain relatively scarce. Approximately 23% of the reviewed literature incorporates multi-
objective formulations, accounting for considerations such as workload balancing or minimizing vehicle
count alongside cost reduction. Furthermore, recent studies have increasingly addressed risks to surround-
ing populations arising from the transport, storage, and processing of general or hazardous waste [12].

Waste collection and transportation account for over 70% of total expenses in municipal solid waste
management systems, with diesel fuel consumption being a major contributor to these costs [15]. Con-
sequently, developing cost-efficient collection strategies is essential. One of the earliest works in route
optimization for solid waste collection was conducted by Beltrami and Bodin [3], who analyzed systems
in New York and Washington using the classical Arc Routing Problem (ARP) approach. They employed
an enhanced version of the Clarke and Wright savings algorithm [8], demonstrating significant potential
for cost reduction and operational efficiency in municipal waste collection. More recently, Li et al. [15]
outlined a roadmap for decision-makers in the WCVRP field, providing opportunities for more adaptive,
efficient, and sustainable waste collection systems.

Numerous studies have proposed different methods to solve this problem. Genetic Algorithm (GA) and
GA-based approaches are commonly employed across many works [1, 4, 7, 10, 27]. Stanković et al. [23]
evaluated the effectiveness of GA, Simulated Annealing (SA), Particle Swarm Optimization (PSO), and Ant
Colony Optimization (ACO) in urban waste collection, showing significant improvements in route opti-
mization. Bouleft and Elhilali Alaoui [5] addressed a dynamic multi-compartment VRP for smart waste
collection using GA. Ben-Romdhane et al. [4] used a GA-based method to optimize healthcare waste rout-
ing under waste separation policies. Quintana et al. [19] developed a VRP-based network for collecting
waste vegetable oil from 49 restaurants, incorporating simultaneous pickup and delivery. Wouda et al.
[29] proposed an integrated selection and routing framework using real-time data to improve route plan-
ning and service efficiency. Nurprihatin and Lestari [18] introduced a WCVRP model with multiple trips,
time windows, split deliveries, heterogeneous fleets, and intermediate facilities, aiming to reduce costs and
distances. Rossit and Toncovich [21] created a bi-objective model considering travel time and the visual im-
pact of routes, promoting more community-friendly collection strategies. Additionally, many researchers
have adopted hybrid approaches to solve WCVRP problems, as seen in [6, 14, 16, 22, 28, 30, 31].

This research aims to propose a practical and scalable model for local governments in Turkey. Com-
plementing studies such as Rizvanoglu [20], which emphasize GIS-based analysis in municipal planning,
this paper introduces an innovative methodology to optimize waste collection routes in Eskisehir’s urban
district. By combining Genetic Algorithms with Tabu Search, our study addresses the problem’s com-
plexity more effectively, aiming to produce high-quality solutions with reduced computation time. While



WASTE COLLECTION PROBLEM 167

the Genetic Algorithm enables exploration of a broad solution space, Tabu Search improves convergence
by avoiding local optima and enhancing intensification and diversification. This hybrid metaheuristic
approach supports the reduction of operational costs, minimization of vehicle numbers, and design of sus-
tainable collection routes. The findings aim to offer a new perspective on urban waste management and
contribute substantially to the WCVRP literature. Addressing this problem has the potential to significantly
lower operational expenses while supporting environmental goals. Optimized routing leads to reduced fuel
use and emissions, which in turn benefits both ecological sustainability and municipal service efficiency.
Enhanced logistical planning also improves service quality and promotes more effective governance. A no-
table aspect of this study is also its emphasis on minimizing vehicle count, as highlighted in [25]. In both
classical and environmentally extended VRP formulations, fewer vehicles are generally associated with
lower emissions. However, in heterogeneous fleet VRPs, emission outcomes are highly sensitive to vehicle
type. For instance, using fewer large, fuel-inefficient trucks may generate more CO2 than using more
medium-sized, efficient ones. Thus, minimizing vehicle count alone does not ensure sustainability—but it
supports environmentally friendly logistics when integrated with proper vehicle selection.

The remainder of the paper is structured as follows. Section 2 presents the problem definition and the
mathematical model. In Section 3 discusses the solution methods for solving waste collection VRP. Section
4 provides all computational results. Section 5 concludes the paper with final remarks.

2. Problem Definition and Mathematical Model

This section introduces the studied problem and the proposed mathematical model in detail.

2.1. Problem definition. The municipality is a local government authority responsible for providing
administrative and public services within the boundaries of an urban district located in the province of
Eskişehir, Turkey. The municipality provides various public services to city residents, including infras-
tructure development, environmental management, sanitation, and waste collection. Prioritizing environ-
mentally friendly initiatives, the urban municipality aims to enhance service efficiency and protect natural
resources in line with the principles of sustainable urban development. One of the municipality’s core
operational areas is waste management, which involves the collection and proper disposal of household
waste generated in residential neighborhoods. Waste collection vehicles operate along designated routes,
gathering refuse and transporting it to solid waste storage and disposal facilities. With effective planning,
this system holds significant potential for cost reduction and minimization of environmental impact. The
system under examination focuses specifically on the municipality’s waste collection operations. In the
current state, the absence of systematic route planning—along with the failure to adequately account for
inter-neighborhood distances and vehicle capacities—results in decreased operational efficiency, increased
costs, and greater environmental harm. The aim of this study is to develop an optimized routing system
that minimizes total operational costs, fuel consumption, and the number of vehicles used. Vehicles will
start from a waste collection facility, collect waste between neighborhoods until capacity is reached, and
return to the same facility to complete their routes. To solve the problem, data such as neighborhood-
level waste quantities, distances between neighborhoods, and fuel consumption were considered. Based
on these inputs, a mathematical optimization model was developed. By addressing the inefficiencies in the
current system, the proposed model seeks to enable more efficient resource use and improve the service
quality.

2.2. Mathematical model. We present the mathematical model for the studied waste collection VRP
below. The following notations are used throughout the section.
Sets

• i, j ∈ N : Set of nodes (neighborhoods and solid waste facility), |N | = 93
• t ∈ T : Set of vehicles, T = {1, 2, . . . , k}
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• K ⊂ N : Rural neighborhoods (visited only on specific days)
• M ⊂ N : Central neighborhoods (visited every day)
• G: Set of available days
• ui: Continuous variable used to eliminate subtours

Parameters
• Qt: Capacity of vehicle t (heterogeneous fleet: 25 and 27 units)
• agi : Amount of waste generated by neighborhood i on day g (depends on daily intensity)
• dij : Distance between neighborhoods i and j
• M : A sufficiently large number used for constraint formulation
• w1, w2: Weights for the normalized objective functions
• g∗ ∈ G: Day selected by the user

Decision Variables

xijt =

{
1, if vehicle t travels from node i to node j,
0, otherwise.

ft =

{
1, if vehicle t is used,
0, otherwise.

Objective functions
The model presents a bi-objective mathematical programming approach that aims to minimize both the
total distance traveled during the waste collection process and the number of vehicles used. The objective
function is defined as the weighted sum of two normalized sub-objectives. The first objective, denoted as
2.1, represents the total distance traveled by the waste collection vehicles between neighborhoods. This
component reflects the routing cost and is weighted by w1. The second objective, denoted as 2.2, corre-
sponds to the total number of vehicles used in the operation and is weighted by w2. The weighting co-
efficients w1 and w2 determine the trade-off between minimizing travel distance and minimizing vehicle
usage. For example, a higher value of w1 prioritizes the reduction of routing costs, whereas a higher value
of w2 emphasizes the minimization of fleet size. Both components of the objective function are normalized
individually. This normalization enables comparability between cost metrics of different magnitudes and
provides a balanced structure for multi-criteria optimization [2.3, 2.4]. The total distance cost z1 aggre-
gates the distances traveled by all vehicles between all neighborhoods (see Equation 2.1). The vehicle usage
indicator z2 represents the total number of active vehicles involved in the routing (see Equation 2.2).

z1 =
∑
t∈T

∑
i∈N

∑
j∈N

dij · xijt (2.1)

z2 =
∑
t∈T

ft (2.2)

z1,norm =
z1 − z1,min

z1,max − z1,min
(2.3)

z2,norm =
z2 − z2,min

z2,max − z2,min
(2.4)
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Under these notifications, the bi-objective mixed integer linear programming model for the waste col-
lection vehicle routing problem is formulated as follows.

Mathematical Model

minimize z = w1 · z1,norm + w2 · z2,norm (2.5)
subject to ∑

i∈N

∑
j∈N

ag
∗

i · xijt ≤ Qt ∀t ∈ T (2.6)

∑
i∈N

xikt −
∑
j∈N

xkjt = 0 ∀k ∈ N \ {1}, ∀t ∈ T (2.7)

∑
i∈N
i ̸=j

∑
t∈T

xijt = 1 ∀j ∈ N \ {1} (2.8)

ui − uj + (n+ 1) ·
∑
t∈T

xijt ≤ n ∀i, j ∈ N \ {1}, i ̸= j (2.9)

∑
i∈N\{1}

xi1t = ft ∀t ∈ T (2.10)

∑
i,j∈N
i ̸=j

xijt ≤M · ft ∀t ∈ T (2.11)

xijt = 0 ∀i ∈ K, if g∗ /∈ {Monday,Wednesday, Friday} (2.12)

xijt ∈ {0, 1}, ft ∈ {0, 1}, ui ≥ 0 (2.13)
Constraint set 2.6 ensures the capacity constraint which means that total demand of a route can not

exceed the capacity of the vehicle serving this route. The flow conservation constraint 2.7 enforces that
the number of vehicles entering a neighborhood equals the number of vehicles leaving it. This ensures
that once a vehicle enters a neighborhood, it must also exit, preserving route continuity. To prevent re-
dundant visits, the unique visit constraint ensures that each neighborhood is visited exactly once during
the collection route. This contributes to routing efficiency and avoids unnecessary travel 2.8. The subtour
elimination constraint 2.9 is incorporated to prevent the formation of smaller loops within the routes [17].
The vehicle utilization constraint 2.10 guarantees that a vehicle is considered active if it collects waste in
any neighborhood, then it turns to depot. This supports accurate vehicle planning and resource tracking.
Constraint 2.11 acts as a connectivity condition that establishes a relationship between the binary decision
variables x and f , where M is a sufficiently large constant. When a vehicle t is employed, the constraint
set (2.11) ensures that ft = 1. This allows vehicle t to be included in a route, although it is not mandatory.
On the other hand, if ft = 0, then the left-hand side of constraint (2.11) must evaluate to zero, meaning that
vehicle t cannot participate in any route. It is not necessary to include the inverse constraint, since the min-
imization of the first objective function—which reflects the cost associated with using vehicles—naturally
drives the model toward reducing the total number of active vehicles [25]. Finally, a scheduling constraint
2.12 is introduced to limit the service of rural neighborhoods to specific days of the week. This reflects
real-world operational conditions by allowing less frequent visits to rural areas, thus enhancing logistical
feasibility and realism .

3. Methodology

This section provides an analysis and detailed explanation of all the methods employed in the study.
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3.1. Google OR-Tools solution method. In this study, an algorithm based on Google OR-Tools which
was first developed in 2009 by Google engineers and is specifically designed to provide optimized solu-
tions for transportation, scheduling, and logistics problems, an open-source optimization library devel-
oped by Google, was employed to optimize urban waste collection processes. Its easy integration with
Python, open-source nature, and inclusion of numerous solution strategies make it highly suitable for ca-
pacitated, multi-stop distribution problems such as urban waste collection. In this study, OR-Tools was
utilized alongside a dataset constructed from inter-neighborhood distances and waste quantities. Param-
eters such as vehicle capacities and customer demands were defined to formulate the solution model. The
problem structure was modeled using the RoutingIndexManager and RoutingModel classes, while heuristic
search methods such as Path Cheapest Arc were employed during the solution process. The resulting routes
were visualized on a map via the OpenRouteService API and presented to users through a digital interface.
As a solution strategy, the Path Cheapest Arc algorithm was employed to generate cost-efficient (in terms
of distance) routes for each vehicle. The model outputs include each vehicle’s route, the total amount of
waste collected, and the route completion structure. These results are presented both as textual output and
as visualized maps, offering a user-friendly and digitally supported route planning system for municipal
use.

The suitability of Google OR-Tools for the studied problem stems from its advantages such as high
solution speed, the ability to handle real-time data, and the capacity to simultaneously minimize total
distance and vehicle usage. In this context, OR-Tools was utilized to achieve faster and more efficient
results on larger-scale datasets. Waste collection route optimization using Google OR-Tools is described
in Algorithm 1. The visualization of vehicle routes created with OR-Tools on the map is shown in Figure
1.

3.2. Hybrid solutionmethod. This section introduces the hybrid algorithm which integrates Tabu Search
(TS) with Genetic Algorithm (GA). TS is a single-solution metaheuristic that leverages memory structures
to navigate escape from local optima, initially introduced by Glover [11], has since been widely applied
to a variety of combinatorial optimization problems including different types of vehicle routing problems
[25]. To prevent cycling back to previously explored solutions, the algorithm incorporates memory-based
structures—commonly referred to as the tabu list—which store key attributes of recent solutions. It has
been effectively adapted to the Waste Collection VRP (WCVRP), particularly under constraints such as
time windows and vehicle capacity limits. Additionally, TS has been employed in bi-objective urban waste
collection models to minimize both routing distance and environmental emissions.

GA is a population-based metaheuristic inspired by the concept of natural selection [13], where the
fittest individuals are more likely to survive and reproduce. It evolves a set of candidate solutions over suc-
cessive generations to progressively approximate high-quality outcomes. GA is particularly well-suited for
addressing complex optimization problems such as vehicle routing and scheduling [24] that are typically
intractable using exact methods. GAs operate on populations of candidate solutions, optimizing them via
iterative crossover, mutation, and selection processes. The stochastic nature of GAs enables them to handle
the complexity inherent in urban waste routing problems. While direct GA for WCVRP is less prevalent,
hybrid GA-TS approaches demonstrate GA’s utility in producing strong initial populations and facilitat-
ing multi-trip route considerations. Hybrid metaheuristic approaches combine the strengths of multiple
algorithms to address the limitations of individual methods. The integration of TS and GA has emerged
as a particularly powerful strategy for solving complex optimization problems—especially those that are
combinatorial, nonlinear, and high-dimensional.

Here are some important features of the hybrid algorithm (HA) used in this study:
GA excels at exploration: It works on a population of candidate solutions, encouraging diversity and

global exploration of the solution space. Through mechanisms like crossover and mutation, GA avoids
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Algorithm 1 Waste Collection Route Optimization using Google OR-Tools
1: Input: Day of operation, number of small and large vehicles
2: Output: Optimized vehicle routes, total distance (z1), number of vehicles used (z2)
3: Step 1: User Input and Initialization
4: Prompt user for inputs; define vehicle capacities and parameters
5: Step 2: Data Importation
6: Load distance matrix, waste generation data, and coordinates from Excel
7: Step 3: Data Preprocessing
8: Normalize neighborhood names; apply weekday-based scaling to waste data
9: Step 4: Feasibility Check

10: Calculate total waste and vehicle capacity
11: if waste > capacity then
12: Prompt user to adjust vehicle counts
13: end if
14: Step 5: Demand Construction
15: Identify nodes and calculate waste demand per neighborhood
16: Step 6: Distance Matrix Generation
17: Build a square matrix for active nodes
18: Step 7: Routing Model Setup
19: Initialize OR-Tools: RoutingIndexManager, RoutingModel
20: Define cost function and capacity constraints
21: Step 8: Optimization
22: Apply PathCheapestArc strategy
23: Set time limit (120 seconds)
24: Step 9: Solution Handling
25: if solution exists then
26: Generate vehicle routes
27: Calculate distance and waste per route
28: Print structured output
29: else
30: Report infeasibility to user
31: end if
32: Step 10: Visualization
33: Use Folium to visualize routes with distinct colors
34: Step 11: Objective Evaluation
35: Compute z1: total distance traveled
36: Compute z2: number of vehicles used

premature convergence and is effective in discovering promising regions of the search space. TS excels
at exploration: It is a single-solution local search method that refines candidate solutions by intensively
searching their neighborhoods. Its memory-based “tabu list” prevents cycling and allows controlled dete-
rioration, enabling the algorithm to escape local optima. By combining them, GA provides broad explo-
ration and maintains solution diversity and TS offers deep exploitation to fine-tune and locally optimize
GA-generated candidates. The general steps of HA algorithm is given below.

• Step1. Initialization of the Population: A diverse set of initial candidate solutions (individuals) is
generated randomly or based on heuristics. These individuals represent potential routing plans and
form the initial population for the genetic algorithm.
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Figure 1. Visualization of vehicle routes created with OR-Tools on the map

• Step 2. Crossover and Mutation Operations in GA: Genetic operators are applied to evolve the
population. Crossover combines parts of two parent solutions to produce offspring, aiming to
inherit the most promising traits. Mutation introduces small random changes to individuals to
maintain diversity and avoid premature convergence.
• Step 3. Improvement via Tabu Search: Each individual solution is further refined using Tabu Search,

a local search method that explores the neighborhood of the current solution while avoiding cycles
and previously visited (tabu) solutions. This step enhances the local optimality of the population.
• Step 4. Selection of the Best Solution: Among the final set of evolved and locally optimized so-

lutions, the one with the best performance according to the predefined objective function (e.g.,
minimal total distance, minimal number of vehicles) is selected as the optimal solution.

4. Computational Results

This section introducesthe data collection and analysis; the results for the toy problem and the results
for the big sized real data used in this study.

4.1. Data collection and analysis. Initially, data were collected from the municipal authority pertaining
to the designated neighborhood within the study area including fuel consumption, waste tonnage, and
number of containers over a period of five days. These data were processed by calculating the average
waste tonnage to ensure consistency in the analysis .In the first phase of the study, data obtained from
designated neighborhood were used as a reference. Using the Python programming language, the waste
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tonnage and estimated number of containers for the remaining 91 neighborhoods (1 waste collection point-
depot and 92 neighborhoods) were calculated through a proportional estimation method. The variables
required for this estimation—such as the number of streets and the total circulation length within each
neighborhood—were obtained using QGIS in Figure 2, a Geographic Information System (GIS) platform.

Figure 2. Visualization of the urban district via QGIS application

The road data used in this study were derived from a dataset classifying the road network. In this
dataset, roads are categorized under the ”fclass” column. However, due to the physical limitations of
waste collection vehicles, certain types of roads were excluded from the analysis. Only roads deemed
accessible to waste collection vehicles were filtered and considered in the evaluation. For instance, road
types such as footway, steps, pedestrian, and living street, which are not suitable for vehicle access, were
removed from the dataset. Following this filtering process, road classes appropriate for vehicle use—such
as residential, secondary, and primary roads—were retained for analysis. This step ensured that the road
network included only operationally usable segments, allowing for the generation of more accurate and
realistic optimized routes. A linear regression model was developed using both the available data and
values obtained from the implementation. The estimations and resulting outputs are presented below. As
shown in Algorithm 2, the known number of waste containers and streets in the studied neighborhood
were used as the basis for estimating the number of waste containers in other neighborhoods. First, the
number of streets in each neighborhood was determined using QGIS, a Geographic Information System
(GIS). Then, the ratio between the number of streets and waste containers was calculated. This ratio was
applied to the number of streets in other neighborhoods to estimate their respective container counts.

In Algorithm 3 below, the known number of waste containers and the average weekly total waste ton-
nage for the studied neighborhood were used as the basis for estimating the waste tonnage in other neigh-
borhoods. First, the average amount of waste per container was calculated using data from the neigh-
borhood. This value was then multiplied by the estimated number of containers in each neighborhood
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Algorithm 2 Estimation of Container Counts Based on Street Data
Input: Known number of streets and containers for reference neighborhood
Input: Excel file containing number of streets per neighborhood

3: Output: Excel file with estimated number of containers per neighborhood
Set reference values:
known street ccount← 233

6: known container count← 309
Read Excel file containing street counts per neighborhood
Rename columns to: [Neighborhood, Street Count]

9: For each neighborhood:
Estimate container count:
estimated containers←

( street count
known street count

)
× known container count

12: Round all estimates to the nearest integer
Save results to Excel file
Print confirmation message: ′′Excel file saved′′

to derive the predicted waste tonnage. The results were compiled into a table containing neighborhood
names, street counts, and estimated waste container numbers, and were subsequently saved as an Excel
file. Using QGIS software, the distances between 92 neighborhoods in the urban district of Eskisehir and
a single solid waste disposal point were calculated and prepared for use in the analysis.

Algorithm 3 Estimation of Neighborhood Waste Tonnage Based on Container Counts
Input: Reference data from the studied neighborhood (container count, total tonnage)
Input: Excel file with estimated container counts for other neighborhoods
Output: Excel file with estimated waste tonnage

4: Define reference data
container count← 309
total tonnage← 11.560

Compute waste per container:
8: waste per container← total tonnage

container count
Read Excel file containing estimated container counts for neighborhoods
For each neighborhood:

Compute estimated waste tonnage:
12: estimated tonnage← estimated containers×waste per container

Round all estimates to two decimal places
Save results to Excel file
Print confirmation message: “Excel file saved”

4.2. Computational results for the toy problem. A series of computational experiments were con-
ducted to verify the efficiency of the proposed solution method. The numerical experiments have been
carried out on a PC with a Casper Excalibur G870 with an Intel Core i5-13420H processor and 32 GB
RAM. We used GAMS software-version 48- to solve the toy problem with the given mathematical model
optimally. Table 1 and Table 2 present the data used for toy problem; Table 3 shows the obtained results.

From Table 3, the detailed results for the mathematical model is analyzed. If w1 = 0.5 and w2 = 0.5, the
corresponding result, z1 = 112.8451 and z2 = 4 which has found optimally. This configuration reflects a
balanced compromise between minimizing distance and minimizing vehicle usage. Four vehicles are used,
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Table 1. Model Parameters and Neighborhood Waste Amounts

Parameter Value

Vehicle capacity (Q) 25
zmin
1 2
zmax
1 200
zmin
2 2
zmax
2 4

Neighborhood (i) Waste Amount (tons)

1 0.00
2 20.43
3 11.56
4 2.24
5 7.78
6 7.26
7 20.73
8 3.14

Table 2. Distance Matrix Between Neighborhoods (km)

From \ To 1 2 3 4 5 6 7 8

1 0.0000 16.6976 12.4516 10.0936 11.8034 12.6836 14.5837 11.4286
2 15.9789 0.0000 6.5475 8.7393 7.5370 9.5497 5.7301 8.2781
3 13.1137 6.7345 0.0000 4.0968 2.2527 5.0928 3.6752 3.6356
4 9.5891 8.8528 3.8234 0.0000 1.6879 2.8629 4.4682 1.6079
5 10.6617 7.9601 2.2527 2.6442 0.0000 3.6403 3.5755 2.1830
6 12.5388 9.2627 5.0083 2.8197 3.5557 0.0000 4.8781 1.6595
7 15.8670 5.7586 3.9198 5.0502 3.8480 3.9736 0.0000 4.5890
8 11.2367 8.6650 3.6356 1.5176 2.1830 1.6586 4.2804 0.0000

Table 3. GAMS results for the toy problem

w1 w2 z1 z2 Vehicle routes Vehicles used
0.5 0.5 112.8451 4 1-2-1 vehicle 5

1-3-5-1 vehicle 7
1-7-4-1 vehicle 2
1-6-8-1 vehicle 3

0.9 0.1 112.8451 4 1-2-1 vehicle 5
1-3-5-1 vehicle 7
1-7-4-1 vehicle 2
1-6-8-1 vehicle 3

0.1 0.9 170.60 2 1-4-7-8-1 vehicle 1
1-3-5-6-2-1 vehicle 2
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and the distance is relatively high. This is a classic trade-off solution in multi-objective settings. Ifw1 = 0.9
and w2 = 0.1, the result is the same. Despite prioritizing distance minimization, the solution remains un-
changed. This suggests that the same routing configuration remains Pareto optimal even when the weight
for distance increases significantly. It implies a robust solution across multiple preference structures. But If
w1 = 0.1 and w2 = 0.9,, which means that the number of vehicles used is 9 times important than the first
objective the result changes and 2 vehicle are used. Prioritizing fewer vehicles leads to route consolidation.
Total route cost increases by over 50% (from 112.85 to 170.60), but the number of vehicles used is halved.
This illustrates the trade-off between fleet minimization and operational cost. Routes become longer and
more complex, potentially increasing driver workload and service time. Scenario 3 significantly reduces
vehicle number at the expense of total distance. This reflects a practical decision-making axis between
operational efficiency (cost/distance) and resource minimization (fleet size). For cost-sensitive operations
(e.g., fuel-dominated logistics), Scenario 1/2 is preferable. For labor or vehicle-limited operations (e.g.,
limited fleet availability), Scenario 3 offers a viable alternative despite higher operational cost.

4.3. Computational results for the case study. In this study, a mathematical vehicle routing model
was developed to enhance the efficiency, environmental sustainability, and digital manageability of urban
waste collection operations. The model was solved using both deterministic linear optimization via Google
OR-Tools and metaheuristic optimization (through a Genetic Algorithm combined with Tabu Search).
Scenario-based comparisons conducted across different dates revealed that Google OR-Tools generally
produced shorter routes and lower objective function values. However, it was also observed that the hy-
brid approach achieved solutions with fewer vehicles in certain scenarios. The below subsections 4.4 and
4.5 include the results of OR-tools and hybrid algorithm for the studied data. All computational results are
explained in detail.

4.4. Computational results of OR-tools. Due to GAMS’s inability to solve the large-scale real-world
problem within a reasonable timeframe, the problem was addressed using both Google OR-Tools and the
proposed hybrid algorithm. In this study, a solution model was developed using the Google OR-Tools li-
brary in Python to optimize the routing of waste collection vehicles. The model is based on the Capacitated
Vehicle Routing Problem (CVRP) framework and aims to ensure that waste collection tasks between neigh-
borhoods are carried out in the most efficient manner, subject to vehicle capacity constraints. The code
structure allows users to input the day of operation along with the number of small and large vehicles,
enabling the system to model daily operational needs. Waste quantities are dynamically determined based
on these inputs. Neighborhood coordinates and distance matrices, obtained through QGIS, are directly
integrated into the model. The routing structure is built using OR-Tools’ RoutingIndexManager and Rout-
ingModel classes, while capacity constraints are defined through appropriate functions. The Path Cheapest
Arc algorithm is employed as the solution strategy to generate the most cost-efficient (i.e., shortest dis-
tance) routes for each vehicle. The model outputs include details such as each vehicle’s route, the amount
of waste collected, and how the route is completed. These outputs are provided both in textual format and
as visualizations on a map, offering a user-friendly and digitally supported route planning system tailored
for municipal use. Waste collection route optimization using Google OR-Tools is described in Algorithm
4.

Table 4 outlines the optimized waste collection plan for Monday within the urban district, incorporat-
ing both small and large vehicles. The model schedules 13 vehicles in total—significantly fewer than the
available fleet of 30 (20 small, 10 large)—highlighting efficient vehicle utilization. Each vehicle route be-
gins and ends at a centralized waste collection point, servicing a series of neighborhoods in a closed-loop
pattern. The collected waste per route ranges between approximately 23.81 kg and 26.95 kg, indicating
effective load balancing across vehicles and adherence to vehicle capacity constraints. The optimization
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Algorithm 4 Waste Collection Route Optimization using Google OR-Tools
Input: Day of operation, number of small and large vehicles
Output: Optimized vehicle routes, total distance (z1), number of vehicles used (z2)
User Input and Initialization
Prompt user for inputs; define vehicle capacities and parameters

5: Data Importation
Load distance matrix, waste generation data, and coordinates from Excel
Data Preprocessing
Normalize neighborhood names; apply weekday-based scaling to waste data
Feasibility Check

10: Calculate total waste and vehicle capacity
if waste > capacity then

Prompt user to adjust vehicle counts
end if
Demand Construction

15: Identify nodes and calculate waste demand per neighborhood
Distance Matrix Generation
Build a square matrix for active nodes
Routing Model Setup
Initialize OR-Tools: RoutingIndexManager, RoutingModel

20: Define cost function and capacity constraints
Optimization
Apply PathCheapestArc strategy
Set time limit (120 seconds)
Solution Handling

25: if solution exists then
Generate vehicle routes
Calculate distance and waste per route
Print structured output

else
30: Report infeasibility to user

end if
Visualization
Use Folium to visualize routes with distinct colors
Objective Evaluation

35: Compute z1: total distance traveled
Compute z2: number of vehicles used

objective focused on minimizing both the total route distance (z1) and the number of vehicles used (z2),
with a weighted composite function yielding a normalized objective value (z) of 0.0402. The total travel
distance across all routes was 869.33 km, and the solution achieved coverage of the entire service area
with only 13 vehicles, implying a 56.7% reduction in active fleet size compared to maximum availability.
The solution contributes to operational efficiency by: reducing total fuel consumption through route min-
imization; limiting carbon emissions via constrained fleet deployment; maintaining full area coverage and
collection service standards. This result confirms the model’s effectiveness in addressing the WCVRP under
real-world constraints. It demonstrates the potential of heuristic-based routing algorithms to significantly
optimize urban waste management processes while aligning with environmental sustainability goals.
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Table 4. Waste Collection Routes and Objective Function Values – Monday

Vehicle Route Total Waste (kg)
Small Vehicle 1 Waste Collection Point� Cumhuriyet� Yarımca� Tandır� Bozdağ� Karadere

� Muttalip Emirler� Muttalip Orta� Hacıseyit� Hayriye� Hacı Ali Bey�
Cumhuriyet�Waste Collection Point

24.74

K118 Waste Collection Point� Uludere� Sırintepe� Yeni�Waste Collection Point 24.70
K119 Waste Collection Point� Karagözler� Turgutlar� Hisar� Çukurhisar Yeni�

Satılmışoğlu� Boyacıoğlu�Waste Collection Point
23.81

8201 Waste Collection Point� Yusuflar� Yeni Akçayır� Yörük Akçayır� Aşağı Kar-
tal� Yukarı Kartal� Nemli� Çanakıran� Mollaoğlu� Tokmak� Musaözü
� Kızılınler� Gökçekısık� Yeni İncesu�Waste Collection Point

24.70

8202 Waste Collection Point � Hasanbey � Ahiler � Gökdere � Kızılcaören �
Yakaşan� Gündüzler� Beyazaltın� Yaylaca�Waste Collection Point

26.84

8203 Waste Collection Point�Aşağısöğütönü� Keskin� Yukarısöğütönü� Batıkent
�Waste Collection Point

26.21

8204 Waste Collection Point� Çamlıca� Zincirlikuyu� Yaşamkent� Yeni�Waste
Collection Point

26.95

8205 Waste Collection Point � Güllük � Bahçelievler � Sütlüce � Yeşiltepe �
Yenibağlar�Waste Collection Point

26.87

8206 Waste Collection Point � Sakintepe � Kozkayı � Sulukaraağaç � Tekeciler �
Atalan � Atalantekke � Bektaşpınar � Hekimdağ � Mamure � İhsaniye �
Waste Collection Point

26.91

8207 Waste Collection Point� Eğriöz� Uludere� Alınca� Buldukpınarı� Avlamış
� Kavacık � Behçetiye � Çalkara � Karaçobanpınarı � Emirceoğlu � Es-
kibağlar�Waste Collection Point

26.07

8208 Waste Collection Point�Hoşnudiye� Ertuğrulgazi� Sazova�Waste Collection
Point

25.14

8209 Waste Collection Point� Mustafa Kemal Paşa� Zafer� Gazipaşa� Şarhöyük
� Şeker�Waste Collection Point

26.29

8210 Waste Collection Point� Ömerağa� Tunalı� Fatih� Kumlubel� Esentepe�
Fevziçakmak�Waste Collection Point

26.27

Total Distance (z1) 869.33 km
Number of Vehicles Used (z2) 13

Normalized Objective Function (z) 0.0402

4.5. Computational results of hybrid algorithm. Hybrid algorithm is implemented by using Python
in Google Colab. Hybrid algorithm is explained in detail in Algorithm 5.

Based on the user-provided inputs such as the day of operation and number of vehicles, daily waste
generation is dynamically calculated. Using inter-neighborhood distance data and waste quantities ob-
tained from QGIS, a distance matrix and a demand vector are constructed. The code then determines the
sequence of neighborhood visits for each vehicle, penalizing capacity violations to ensure the feasibility
of the model. At the end of the solution process, the route for each vehicle, the amount of waste collected,
and the vehicle type (small/large) are printed to the console, providing operationally actionable outputs.
Additionally, a normalized objective function value is computed as a multi-objective performance metric.
The data used for an example of the case study is given in Table 5. The obtained solution in Table 6 analyzes
the result of a daily waste collection report for Monday.

Table 6 presents the outcome of a hybrid optimization algorithm applied to the Vehicle Routing Prob-
lem (VRP) for municipal solid waste collection in the urban district. The solution encompasses 13 routes
serviced by a mix of 8 large and 5 small vehicles, each route beginning and ending at the central solid
waste facility. The fleet is composed of heterogeneous vehicles, categorized as large and small, to match
neighborhood accessibility and expected waste volumes. The hybrid algorithm allocates 8 large vehicles
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Algorithm 5 Hybrid Algorithm
Require: Distance matrix, demands, vehicle capacities, population size P , generations G, mutation rate

µ, crossover rate ρ, tabu tenure L, tabu iterations T
Ensure: Feasible solution best with minimized cost

Initialize population P with feasible solutions using create individual()
2: Evaluate fitness of each individual in P using calc fitness()

for gen = 1 to G do
4: Sort population P by fitness

Select elite individuals to carry to next generation
6: while new population size < |P | do

Select two parents from elite pool
8: if rand() < ρ then

child← crossover(parent1, parent2)
10: else

child← mutate(parent1)
12: end if

if rand() < µ then
14: child← mutate(child)

end if
16: child← tabu search(child, L, T )

Add child to new population
18: end while

P ← new population
20: end for

return best individual from P

Table 5. Daily Waste Collection Summary (Monday)

Parameter Value
Number of Small Vehicles 10
Number of Large Vehicles 10
Total Distance Traveled 1985.14 km
Total Vehicles Used 13
Normalized Objective Function Value 0.0431

to longer and denser routes, typically servicing extended rural or semi-urban neighborhoods with higher
cumulative waste volumes. 5 small vehicles to shorter and more compact urban routes, likely where ma-
neuverability is critical. This heterogeneous deployment suggests that the model effectively incorporates
vehicle capacities and route feasibility into its optimization logic, enhancing real-world applicability. The
amount of waste collected per vehicle ranges from 23.15 kg (Small 5) to 26.97 kg (Large 2), closely aligning
with presumed vehicle capacity constraints. The narrow variance in load values indicates excellent load
balancing and an efficient distribution of waste collection responsibilities across the fleet. It minimizes the
risk of overloading while maximizing capacity utilization, which contributes directly to operational stabil-
ity. The routes vary in complexity, with large vehicles (e.g., Large 4 and Large 7) covering up to 15+ distinct
collection points, while small vehicles typically serve 3–6 neighborhoods per trip. This differentiation re-
flects the algorithm’s capacity to handle varying degrees of spatial dispersion and adapt route length to
vehicle capabilities. The inclusion of both high-density urban centers and remote suburban areas within
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Table 6. Hybrid Algorithm Results for Vehicle Routes and Collected Waste (Monday)

Vehicle Route Waste (kg)

Large 1 Solid Waste Facility � Zafer � Tandır � Kavacık � Yay-
lacık� Şeker� Karagözler� Aşağı Kartal� Solid Waste
Facility

26.80

Small 1 Solid Waste Facility� Yeşiltepe� Zincirlikuyu� Eğriöz�
Karaçobanpınarı� Solid Waste Facility

24.43

Large 2 Solid Waste Facility � Emirceoğlu � Uludere � Hisar �
Satılmışoğlu� Yörük Akçayır� Behçetiye� Sulukarağaç
� Hayriye� Solid Waste Facility

26.97

Large 3 Solid Waste Facility� Yusuflar� Ömerağa� Kumlubel�
Muttalıp Emirler� Bozdağ� Aşağısöğütönü� Boyacıoğlu
� Turgutlar � Yukarı Kartal � Musaözü � Gökdere �
Solid Waste Facility

26.72

Large 4 Solid Waste Facility � Beyazaltın � Kumlubel � Çalkara
� Keskin � Yaşamkent � Tekeciler � Buldukpınarı �
Çanakkıran � Cumhuriyet � İhsaniye � Hacı Ali Bey �
Nemli� Hacıseyit� Yeni� Solid Waste Facility

26.41

Small 2 Solid Waste Facility� Uluönder� Şirintepe� Solid Waste
Facility

24.70

Small 3 Solid Waste Facility � Batıkent � Esentepe � Avlamış �
Yarımca� Solid Waste Facility

24.88

Small 4 Solid Waste Facility� Yeni Akçayır� Sakintepe� Sütlüce
�Mustafa Kemal Paşa� Taycılar� Solid Waste Facility

24.55

Large 5 Solid Waste Facility� Fevziçakmak� Fatih� Bektaşpınar
� Cumhuriyet� Hasanbey� Kızılcören� Danişment�
Ahiler� Solid Waste Facility

26.92

Large 6 Solid Waste Facility � Hoşnudiye � Gazipaşa � Mut-
talıp Koyunlar � Şarhöyük � Eskibağlar � Mollaoğlu �
Çukurhisar Yeni� Laradere� Solid Waste Facility

26.82

Large 7 Solid Waste Facility � Tunalı � Muttalıp Orta � Ata-
lantekke � Güllük � Yenibağlar � Yukarı Söğütönü �
Yeni İncesu�Mamure� Işıklar� Hekimdağ� Atalan�
Kızılinler� Gökçekısık� Solid Waste Facility

26.94

Large 8 Solid Waste Facility � Çamlıca � Alınca � Gündüzler �
Solid Waste Facility

26.19

Small 5 Solid Waste Facility� Takmak� Sazova� Ertuğrulgazi�
Bahçelievler� Solid Waste Facility

23.15
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optimized routes indicates strong spatial adaptability of the model. The detailed vehicle routing struc-
ture suggests that the hybrid algorithm—likely combining heuristics such as Genetic Algorithms and Tabu
Search—successfully navigates a complex solution space with multi-dimensional constraints (capacity, dis-
tance, route length, vehicle type). The consistency of near-capacity loads and strategic route segmentation
indicate the algorithm’s competence in balancing exploration (diversification) and exploitation (intensifi-
cation) phases. By considering the operational and environmental benefits it is observed that fewer ve-
hicles used: only 13 out of a larger potential fleet (assumed from prior context) were utilized. Optimized
routes reduce unnecessary travel, minimizing fuel use and emissions. All designated neighborhoods were
included in the plan without redundancy.

Figure 3 below provides a comparative analysis of both methods across three performance indicators:
total distance, number of vehicles used, and the aggregated objective function value. A review of this fig-
ure shows that Google OR-Tools consistently produced lower distances for almost all scenarios, indicating
its effectiveness in distance-based optimization. In terms of vehicle usage, both methods yielded similar
results, though the hybrid algorithm occasionally achieved solutions with fewer vehicles, demonstrating
its flexibility and capability for generating alternative solutions. Regarding the overall performance met-
ric, OR-Tools generally outperformed the hybrid method by producing lower values. Beyond generating
optimal solutions, the study also developed a web-based user interface to facilitate the practical applica-
tion of the model. This interface enables municipal personnel to easily and quickly select neighborhoods
during daily planning and visualize the most efficient routes. Based on user input, the system provides
route suggestions for both small and large-capacity vehicles, and displays them on a map using the Open-
RouteService API. This framework offers a user-friendly digital solution and creates a practical platform
that decision-makers can readily implement in real-world operations.

Figure 3. Comparison of OR-Tools and the Hybrid Method

5. Conclusion

This study focuses on enhancing the efficiency of waste collection operations in the urban district of
Eskisehir, Turkey. Driven by the challenges of growing urbanization and population density, the research
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addresses the need for more effective and sustainable municipal waste management. A region-specific
solution to the Vehicle Routing Problem is developed using input data such as neighborhood-level waste
generation, container utilization rates, and vehicle capacity constraints. The proposed model aims to op-
timize operational performance by minimizing both overall costs and the number of vehicles required.
In line with environmental sustainability goals, the study offers a practical and scalable tool for local ad-
ministrations. A hybrid metaheuristic approach—combining Genetic Algorithm and Tabu Search, both
well-established in the literature—is employed. The performance of the hybrid method is assessed through
computational experiments on a real-world case, with comparative analysis against Google OR-Tools. The
findings aim to provide a novel contribution to the field of urban waste management and enrich the aca-
demic discourse. Google OR-Tools method can be adopted as a primary tool for daily operational planning
in municipalities due to its ability to deliver stable and low-cost solutions within a short time frame. The hy-
brid algorithm can serve as a valuable tool for generating alternative solutions under varying time frames
or seasonal fluctuations. As a future work, the proposed model can be further expanded in the future by
incorporating carbon emissions, labor costs, and traffic congestion, making it more comprehensive. The
developed model and digital interface are not limited to the urban district alone; they can be easily im-
plemented by other local governments with similar infrastructure. The proposed algorithm can be also
applied to other combinatorial optimization problems, by considering other objectives. Moreover, incor-
porating machine learning methods to dynamically adjust parameters during execution may enhance the
system’s adaptability and overall efficiency across different problem instances.
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