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Abstract. This paper investigates the problem of identifying optimal dual frames in finite-dimensional
Hilbert spaces when the reconstruction error, in the presence of erasures, is measured by the Hilbert–Schmidt
norm. We present a unified framework for characterizing optimal duals for arbitrary m-erasure scenarios,
with 1 ≤ m ≤ N , where N denotes the number of frame elements. Several results for canonical dual
frame to be optimal are established, providing conditions under which the canonical dual is the unique
optimal dual. We further construct explicit examples illustrating both the uniqueness and non-uniqueness
phenomena, as well as situations where the canonical dual fails to be optimal. These results shed light on
the structural properties of frames that govern erasure-robust reconstructions.
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1. Introduction

Frames, first introduced by Duffin and Schaeffer [7], extend the classical notion of bases in Hilbert
spaces by allowing linear dependence among elements. This redundancy enables multiple representa-
tions of vectors in a Hilbert space Hn while preserving the property that the closed linear span covers
the entire space. Such redundancy is not merely a theoretical curiosity, it plays a central role in ensur-
ing stable and robust signal reconstruction, even when some frame coefficients are lost or corrupted.
This makes frames particularly well suited for modern applications such as data transmission, where
packet loss or erasures frequently arise due to network congestion, bandwidth limitations, or other ad-
verse channel conditions. The ability of frames to withstand such disruptions has motivated significant
research into their behavior under erasures, a topic of enduring interest in signal processing, coding
theory, and related areas.

A substantial body of work has focused on optimal reconstruction from incomplete frame data.
Casazza and Kovačevi’c [4] studied equal-norm tight frames, analyzing their structure, construction
methods, and resilience to erasures. From a coding theory perspective, Goyal, Kovačevi’c, and Kelner
[9] showed that uniform tight frames are optimal for single erasures and highlighted the role of opti-
mal dual frames in minimizing worst-case reconstruction error. Holmes and Paulsen [10] introduced
the use of the operator norm to evaluate optimality under erasures, providing necessary and sufficient
conditions for the canonical dual pair (F, F ) to be optimal for one or two erasures in the Parseval
setting. Bodmann [3] proposed minimizing the average operator norm of error operators across all
erasure patterns of a fixed size. Lopez and Han [15] established sufficient conditions ensuring that the
canonical dual is the unique optimal dual with respect to the operator norm, extending the analysis
to multiple erasures and exploring the topology of the set of optimal duals. Additional perspectives
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have emerged, such as the spectral radius–based approach of Pehlivan et al. [20]. This line of work has
been extended to the case of two erasures [21, 6, 18], and probabilistic models have been introduced
to better reflect the inherent randomness of erasure events. Optimal dual pairs under various norm
was studied in [2]. Related work in [16] investigates optimal dual frame selection under a new mea-
surement approach, namely the ℓp–average criterion, instead of the usual min–max framework, and
establishes characterization and uniqueness results across multiple erasure settings. Leng, Han, and
Huang [12, 13] incorporated probability-weighted models for optimality under operator norms, while
related contributions [1, 14] have further developed probabilistic approaches to optimal dual design.
Beyond classical frames, numerous generalized structures such as fusion frames, group representation
frames, and K−frames have broadened the scope of frame theory. In particular, K−frames, introduced
by Găvruţa [8], generalize frames by allowing reconstruction only within the range of a bounded lin-
ear operator K , making them especially relevant for constrained reconstruction problems. The study
of K−frames and their duals has become an active area, with results addressing construction methods,
duality characterizations, and robustness properties (see, e.g., [22, 24, 11, 23, 19, 17]).

In this paper, we focus on the Hilbert–Schmidt norm as the error metric for optimal dual design
under erasures. We develop a general framework to handle arbitrary m−erasure scenarios, establish
new conditions for optimality, and identify cases where the canonical dual is uniquely optimal. Ex-
amples are provided to illustrate the theoretical results and to highlight situations where uniqueness
fails, thereby offering a more complete picture of optimal reconstruction in the Hilbert–Schmidt setting.

Organization of the paper: Section 2 develops the foundational framework for modeling coefficient
erasures and formalizes the Hilbert–Schmidt norm–based error measure. Section 3 presents the main
characterizations of m-erasure optimal dual frames, including necessary and sufficient conditions for
optimality, as well as uniqueness results for the canonical dual under certain structural conditions.
We also provide illustrative examples demonstrating both uniqueness and non-uniqueness scenarios,
highlighting the practical implications of the theory. In addition, we illustrate an example where the
canonical dual is not optimal for any number of erasures and provide a sufficient condition under which
the canonical dual fails to be optimal.

2. Preliminaries

Let Hn be an n-dimensional (real or complex) Hilbert space. A finite set of vectors F = {fk}Nk=1 ⊂
Hn is called a frame for Hn if there exist constants 0 < A ≤ B such that

A∥f∥2 ≤
N∑
k=1

|⟨f, fk⟩|2 ≤ B∥f∥2, ∀f ∈ Hn.

Here, A and B are the frame bounds, with the optimal lower bound being the largest possible A and
the optimal upper bound being the smallest possible B. A frame is called normalized if each vector has
unit norm, i.e., ∥fk∥ = 1 for all k.

If A = B, the frame is called a tight frame, i.e.,
N∑
k=1

|⟨f, fk⟩|2 = A∥f∥2, ∀f ∈ Hn.

In particular, if A = B = 1, the frame is called a Parseval frame.
Every finite sequence {fk}Nk=1 ⊂ Hn is a frame for the subspace W := span{fk}Nk=1. Given a frame

F = {fk}Nk=1, the analysis operator TF : Hn → CN is defined by

TF (f) = {⟨f, fk⟩}Nk=1.
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The adjoint T ∗
F : CN → Hn, given by

T ∗
F ({ck}Nk=1) =

N∑
k=1

ckfk,

is called the synthesis operator (or pre-frame operator).
The frame operator SF : Hn → Hn is defined by

SF f = T ∗
FTF f =

N∑
k=1

⟨f, fk⟩fk,

which is a positive, self-adjoint, and invertible operator. It leads to the reconstruction formula:

f =

N∑
k=1

⟨f, S−1
F fk⟩fk, ∀f ∈ Hn.

A frame G = {gk}Nk=1 in Hn is called a dual frame of F = {fk}Nk=1 if for all f ∈ Hn,

f =

N∑
k=1

⟨f, fk⟩gk =

N∑
k=1

⟨f, gk⟩fk.

It is well known that {S−1
F fk}Nk=1 is a dual frame of F , called the canonical (or standard) dual frame.

If F is a basis, this dual is unique. When F is not a basis, there are infinitely many duals [5], and every
dual frame G = {gk}Nk=1 of F can be expressed as

gk = S−1
F fk + uk, k = 1, . . . , N,

where {uk}Nk=1 ⊂ Hn satisfies
N∑
k=1

⟨f, fk⟩uk =
N∑
k=1

⟨f, uk⟩fk = 0, ∀f ∈ Hn.

If G is a dual frame of F , then
N∑
k=1

⟨gk, fk⟩ = tr(TFT
∗
G) = tr(T ∗

GTF ) = tr(I) = n. (2.1)

In particular, if F is a Parseval frame, then
∑N

k=1 ∥fk∥2 = n.

Erasures and the error operator: During data transmission, if erasures occur in a setΛ ⊂ {1, . . . , N}
of m indices, the error operator is defined by

EΛf := T ∗
GDTF f =

∑
i∈Λ

⟨f, fi⟩gi,

where D is the N ×N diagonal matrix with dii = 1 if i ∈ Λ and dii = 0 otherwise. The corresponding
reconstruction operator is

RΛf = (I − EΛ)f =
∑
i∈Λc

⟨f, fi⟩gi.

The maximum error for m-erasures is
max {∥T ∗

GDTF ∥HS : D ∈ Dm} ,
where Dm denotes the set of all N × N diagonal matrices with exactly m ones and N −m zeros on
the main diagonal, and ∥ · ∥HS denotes the Hilbert–Schmidt norm. For a frame F and a dual frame G,
define

F (k)(F,G) = max {∥EΛ∥HS : |Λ| = k} ,
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and
F (k)(F ) = min

{
F (k)(F,G) : G is a dual frame of F

}
.

A dual frame G of F is called k-erasure Hilbert–Schmidt optimal if it is (k − 1)-erasure optimal and

F (k)(F,G) = F (k)(F ).

The next result provides an explicit expression for the 1-erasure error measure F (1)(F,G) in terms of
the norms of the frame elements and their corresponding dual elements.

Proposition 2.1. Let F = {fi}Ni=1 be a frame forHn, and let G = {gi}Ni=1 be a dual frame of F . Then

F (1)(F,G) = max
1≤i≤N

∥fi∥ ∥gi∥.

Proof. Suppose that the error occurs in ith position, so that Λ = {i}. The corresponding error operator
is then

EΛ,F,Gf = ⟨f, fi⟩ gi, for all f ∈ Hn.

Using the definition of the Hilbert–Schmidt norm, we have

∥EΛ,F,G∥HS = ∥T ∗
GDTF ∥HS

=
√
tr
(
T ∗
FDTGT ∗

GDTF

)
=
√

tr
(
DTFT ∗

FDTGT ∗
G

)
=
√
∥fi∥2 ∥gi∥2

= ∥fi∥ ∥gi∥.

Maximizing over all possible single erasure positions gives

F (1)(F,G) = max
1≤i≤N

∥fi∥ ∥gi∥.

□

Remark 2.2. For a frame F = {fi}Ni=1 and a dual G = {gi}Ni=1 inHn, we then have

F (1)
F,G = max

1≤i≤N
∥fi∥ ∥gi∥ ≥ max

1≤i≤N

∣∣⟨fi, gi⟩∣∣ ≥ n

N
.

3. Characterization ofm−Erasure Optimal Dual Frames

In this section, we provide some characterization of optimal dual frames for a given frame. The
following proposition provides a sufficient condition under which the canonical dual of F achieves
optimality. To this end, define

M := max
{
∥fi∥ · ∥S−1

F fi∥ : 1 ≤ i ≤ N
}
,

and set
I1 :=

{
i : ∥fi∥ · ∥S−1

F fi∥ = M
}
, I2 := {1, 2, . . . , N} \ I1.

Let Hj := span{fi : i ∈ Ij} for j = 1, 2, and express the sufficient optimality condition in terms of
these subspaces.

Theorem 3.1. Let F = {fi}Ni=1 be a frame for the Hilbert space Hn. Suppose that H1 ∩H2 = {0} and
that the set {fi}i∈I2 is linearly independent. Then the canonical dual of F is the unique 1−erasure optimal
dual of F.
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Proof. Let G = {gi}Ni=1 be a non-canonical dual of F . Then G can be expressed as gi = S−1
F fi +

ui, 1 ≤ i ≤ N, where the sequence {ui}Ni=1 satisfies
∑N

i=1⟨f, ui⟩fi = 0, ∀ f ∈ Hn. Rewriting this
condition in terms of the index sets I1 and I2, we obtain∑

i∈I1

⟨f, ui⟩fi +
∑
i∈I2

⟨f, ui⟩fi = 0, ∀ f ∈ Hn.

Since H1 ∩H2 = {0}, it follows that∑
i∈I1

⟨f, ui⟩fi = 0 and
∑
i∈I2

⟨f, ui⟩fi = 0, ∀ f ∈ Hn.

By the linear independence of {fi}i∈I2 , we deduce that ui = 0 for all i ∈ I2. Next, consider U1 =
{ui}i∈I1 and F1 = {fi}i∈I1 . The orthogonality condition implies T ∗

F1
TU1 = 0. Consequently,∑

i∈I1

⟨S−1
F fi, ui⟩ = tr

(
TU1T

∗
S−1
F F1

)
= tr

(
T ∗
S−1
F F1

TU1

)
= tr

(
S−1
F T ∗

F1
TU1

)
= 0.

Thus,

Re

∑
i∈I1

⟨S−1
F fi, ui⟩

 = 0.

Now consider the two possible cases:
Case 1: If Re

(
⟨S−1

F fi, ui⟩
)
= 0 for all i ∈ I1, then

max
1≤i≤N

∥fi∥ ∥gi∥ ≥ max
i∈I1

∥fi∥ ∥gi∥

=max
i∈I1

∥fi∥
√

∥S−1
F fi∥2 + ∥ui∥2 + 2Re⟨S−1

F fi, ui⟩

=max
i∈I1

√
M2 + ∥fi∥2∥ui∥2

>M.

Case 2: IfRe
(
⟨S−1

F fi, ui⟩
)
̸= 0 for some i ∈ I1, then there exists j ∈ I1 such thatRe

(
⟨S−1

F fj , uj⟩
)
>

0. Hence,
max
1≤i≤N

∥fi∥ ∥gi∥ ≥ ∥fj∥
√
∥S−1

F fj∥2 + ∥uj∥2 + 2Re⟨S−1
F fj , uj⟩ > M.

In either case, for any non-canonical dual G, we obtain

F (1)(F,G) > F (1)(F, S−1
F F ).

Thus, the canonical dual S−1
F F is the unique 1-erasure optimal dual of F . Since a 1-erasure optimal

dual is also optimal for any m-erasure scenario, the canonical dual remains optimal for all m-erasures.
□

Corollary 3.2. LetF = {fi}Ni=1 be a frame for the Hilbert spaceHn such that ∥fi∥ ∥S−1
F fi∥ = c for all i,

where c > 0 is a constant. Then the canonical dual frame S−1
F F is the unique optimal dual frame for any

m-erasures.

The following example illustrates that the canonical dual frame does not necessarily minimize the
quantitymax1≤i≤N ∥fi∥ ∥gi∥. In particular, we exhibit a frame forC2 for which a non-canonical dualG
satisfyF (1)(F,G) > F (1)(F, S−1

F F ), showing that the canonical dual is not always 1−erasure optimal.

Example 3.3. Let H2 = C2 and consider the frame F = {f1, f2, f3} with

f1 =

[
1

0

]
, f2 =

[
1

1

]
, f3 =

[
1

−1

]
.
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Then

SF =

3∑
i=1

fif
∗
i =

[
3 0

0 2

]
, S−1

F =

[
1
3 0

0 1
2

]
.

Hence the canonical dual S−1
F F =


13
0

 ,

131
2

 ,

 1

3

−1

2


.

It is easy to compute that

∥f1∥ ∥S−1
F f1∥ = 1

3 , ∥f2∥ ∥S−1
F f2∥ = ∥f3∥ ∥S−1

F f3∥ =

√
13

3
≈ 0.850.

Thus

max
1≤i≤3

∥fi∥ ∥S−1
F fi∥ =

√
13

3
≈ 0.850.

Any dual frame G = {gi}3i=1 of F must be of the form

g1 =

[1
3
− 2α

−2β

]
, g2 =

13 + α

1

2
+ β

 , g3 =

 1

3
+ α

−1

2
+ β

 , α, β ∈ C.

Taking α =
4− 3

√
3

6
and β = 0, consider the dual dual G̃ = {g̃1, g̃2, g̃3} defined by

g̃1 =

[
1− 2s

0

]
, g̃2 =

[
s
1
2

]
, g̃3 =

[
s

−1
2

]
,

where s := 1−
√
3
2 . One can verify that

∥f1∥ ∥g̃1∥ = |1− 2s| =
√
3− 1, ∥f2∥ ∥g̃2∥ = ∥f3∥ ∥g̃3∥ =

√
2
√
s2 + 1

4 =
√
3− 1,

so that
max
1≤i≤3

∥fi∥ ∥g̃i∥ =
√
3− 1 ≈ 0.732.

Since
√
3− 1 ≈ 0.732 < 0.850, the dual G̃ achieves a strictly smaller worst-case product

max
1≤i≤N

∥fi∥ ∥gi∥ than the canonical dual. Therefore, the canonical dual S−1
F F is not 1−erasure optimal

for this frame F .

The next proposition shows that whenever a non-trivial linear relation among the frame elements
involves coefficients that are all nonzero on a linearly independent subset, the canonical dual fails to
be optimal for any number of erasures. In other words, under these conditions, there always exists an
alternate dual that performs strictly better than the canonical dual.

Proposition 3.4. Let F = {fi}Ni=1 be a frame for the Hilbert space Hn. Suppose {fi}i∈I1 is linearly

independent and there exists a sequence of complex number {ri}Ni=1 satisfy
N∑
i=1

rifi = 0, ci ̸= 0, for all

i ∈ I1. Then the canonical dual of F is not a optimal dual of F for any erasures.

In order to prove the above Proposition, we make use of the following lemma.

Lemma 3.5. Let {f1, f2, . . . , fk} be a linearly independent set of vectors in a Hilbert space Hn, and let
β ∈ C. Then there exists a vector h ∈ Hn such that

⟨fi, h⟩ = β for all i = 1, 2, . . . , k.
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Proof. Let {e1, . . . , en} be an orthonormal basis for Hn. For each i = 1, . . . , k, we can write

fi = fi1e1 + fi2e2 + · · ·+ finen.

Suppose h = h1e1 + · · ·+ hnen. Then the condition ⟨fi, h⟩ = β is equivalent to the linear system

fi1h1 + fi2h2 + · · ·+ finhn = β, i = 1, 2, . . . , N.

This system consists of k equations in n unknowns {h1, . . . , hn}. Since {f1, . . . , fk} is linearly in-
dependent, the coefficient matrix has rank k. Consequently, the augmented matrix also has rank k,
and the system admits a solution. For such a solution {hj}nj=1, the vector h =

∑n
j=1 hjej satisfies

⟨fi, h⟩ = β, ∀ i = 1, 2, . . . , k. □

Proof of Proposition 3.4. Since {fi}i∈I1 is linearly independent, by Lemma 3.5, there exists a vector
h ∈ Hn such that ⟨S−1

F (cifi), h⟩ < 0 for all i ∈ I1. Define U = {ui}Ni=1 by setting ui = c̄ih. Then,
for any t ∈ R, we have T ∗

tUTF = 0. Consequently, {gi}Ni=1 = {S−1
F fi + ui}Ni=1 is a dual of F . Now, for

all i ∈ I1, we compute

∥fi∥ ∥S−1
F fi + tui∥ = ∥fi∥

√
∥S−1

F fi∥2 + t2∥ui∥2 + 2tℜ⟨S−1
F fi, ui⟩

=
√
M2 + t2∥fi∥2∥ui∥2 + 2t ∥fi∥2ℜ⟨S−1

F fi, ui⟩.

Since ⟨fi, ui⟩ < 0, we can choose t1 > 0 sufficiently small so that

∥fi∥ ∥S−1
F fi + t1ui∥ < M for all i ∈ I1.

Also, for i ∈ I2, we have ∥fi∥ ∥S−1
F fi∥ < M . Thus there exists t2 > 0 small enough such that

∥fi∥ ∥S−1
F fi+t2ui∥ =

√
∥fi∥2∥S−1

F fi∥2 + t22∥fi∥2∥ui∥2 + 2t2∥fi∥2ℜ⟨S−1
F fi, ui⟩ < M for all i ∈ I2.

Taking t = min{t1, t2}, the dual G̃ = {S−1
F fi + tui}Ni=1 of F satisfy ∥fi∥ ∥S−1

F fi + tui∥ < M =

∥fi∥ ∥S−1
F fi∥, for all i. This completes the proof. □

The following example demonstrates a case where the canonical dual is the unique 1−erasure opti-
mal dual and hence for m−erasures.

Example 3.6. Consider the frame F = {f1, f2, f3} for C2, where

f1 =

[
1
0

]
, f2 =

[
−1

2√
3
2

]
, f3 =

[
−1

2

−
√
3
2

]
.

It is easy to verify that F is a tight frame with tight bound 3
2 . Therefore, its canonical dual is

S−1
F F =

{[
2
3

0

]
,

[
−1

3
1√
3

]
,

[
−1

3

− 1√
3

]}
.

One can compute

∥fi∥ ∥S−1
F fi∥ =

2

3
, 1 ≤ i ≤ 3.

Hence, by Proposition 2.1, F (1)(F, S−1
F F ) = 2

3 , and by Remark 3.9, the canonical dual S−1
F F is 1-

erasure optimal. Moreover, any dual frame G = {gi}3i=1 of F must be of the form

g1 =

[
2
3 + α

β

]
, g2 =

[
−1

3 + α
1√
3
+ β

]
, g3 =

[
−1

3 + α

− 1√
3
+ β

]
, α, β ∈ R.
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If G is a 1-erasure optimal dual of F , then max1≤i≤3 ∥fi∥ ∥gi∥ = 2
3 . Using the fact that

3∑
i=1

∥fi∥ ∥gi∥ ≥ 2, it follows that ∥fi∥ ∥gi∥ = 2
3 , ∀i, which leads to the system of polynomial equa-

tions: 
(
2
3 + α

)2
+ β2 = 4

9 ,(
−1

3 + α
)2

+
(

1√
3
+ β

)2
= 4

9 ,(
−1

3 + α
)2

+
(
− 1√

3
+ β

)2
= 4

9 .

The only solution of this system is α = β = 0. Hence, the canonical dual S−1
F F is the unique

1−erasure optimal dual of F .

The following proposition may be regarded as a weaker form of Theorem 3.7. While Theorem 3.7
establishes the uniqueness of the canonical dual as the 1-erasure optimal dual under the additional
assumption that the subfamily {fi}i∈I2 is linearly independent, the proposition below removes this
linear independence requirement. In this more general situation, we still guarantee that the canonical
dual S−1

F F is 1-erasure optimal, although uniqueness is not necessarily preserved.

Proposition 3.7. Let F = {fi}Ni=1 be a frame forHn. IfH1 ∩H2 = {0}, then the canonical dual S−1
F F

is 1−erasure optimal.

Proof. We argue by contradiction. Assume that there exists a dual G = {gi}Ni=1 such that

F (1)(F,G) < F (1)(F, S−1
F F ).

By Proposition 2.1, for each i ∈ I1 we must have
∥fi∥ ∥gi∥ < M = ∥fi∥ ∥S−1

F fi∥.

Since any dual G = {gi}Ni=1 of F can be expressed as gi = S−1
F fi + ui, where

∑N
i=1⟨f, ui⟩fi = 0 for

all f ∈ Hn, it follows for i ∈ I1 that
∥S−1

F fi + ui∥2 < ∥S−1
F fi∥2.

Expanding this inequality and taking sum over i ∈ I1 yields∑
i∈I1

∥ui∥2 + 2Re

∑
i∈I1

⟨S−1
F fi, ui⟩

 < 0. (3.1)

From the condition
∑N

i=1⟨f, ui⟩fi = 0 for all f ∈ Hn and the hypothesis H1 ∩ H2 = {0}, we de-
duce that

∑
i∈I1⟨S

−1
F fi, ui⟩ = 0. Substituting into (3.1) gives

∑
i∈I1 ∥ui∥

2 < 0, which is impossible.
Therefore, the canonical dual S−1

F F must be 1−erasure optimal. □

The following theorem shows that 1−erasure optimality is preserved under the action of a unitary
operator on both the frame and its dual.

Theorem 3.8. Let F be a frame for Hn and let U be a unitary operator on Hn. Then a dual frame G is
1-erasure optimal for F if and only if UG is 1-erasure optimal for UF .

Proof. Suppose G is a 1-erasure optimal dual of F under the operator norm. Let G′ be any dual of UF .
Since U is unitary, the sequence U∗G′ is a dual of F . Hence, by optimality of G we have

F (1)(UF,UG) = F (1)(F,G) ≤ F (1)(F,U∗G′) = F (1)(UF,G′).

This shows that UG is 1-erasure optimal for UF . Conversely, if UG is 1-erasure optimal for UF , then
applying the same argument with U∗ in place of U and exchanging the roles of (F,G) and (UF,UG)
yields that G is 1-erasure optimal for F . □
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Remark 3.9. Note that for any given frame F, F (1)(F ) ≥ n

N
.

Lemma 3.10. Let a1, a2, . . . , ak be k real numbers (not necessarily distinct), and define

E = {(i1, i2, . . . , iℓ) : 1 ≤ ij ≤ k, ij are all distinct} .

If s = a1 + a2 + · · ·+ ak, then max
(i1,i2,...,iℓ)∈E

(
ai1 + ai2 + · · ·+ aiℓ

)
≥ s ℓ

k .

Proof. Assume, for contradiction, that max
(i1,i2,...,iℓ)∈E

(
ai1+ai2+· · ·+aiℓ

)
<

s ℓ

k
. Then, ai1+ai2+· · ·+

aiℓ <
s ℓ

k
, ∀ (i1, i2, . . . , iℓ) ∈ E. Summing these inequalities over all

(
k
ℓ

)
choices of (i1, . . . , iℓ) ∈ E

gives ∑
(i1,...,iℓ)∈E

(
ai1 + · · ·+ aiℓ

)
<

(
k

ℓ

)
· s ℓ
k
.

On the other hand, each aj appears in exactly
(
k−1
ℓ−1

)
of the ℓ-tuples in E, so∑

(i1,...,iℓ)∈E

(
ai1 + · · ·+ aiℓ

)
=

(
k − 1

ℓ− 1

)
· (a1 + · · ·+ ak) =

(
k − 1

ℓ− 1

)
· s.

Since
(
k−1
ℓ−1

)
=
(
k
ℓ

)
· ℓk , the above equality contradicting our earlier inequality. Hence max

(i1,i2,...,iℓ)∈E

(
ai1+

· · ·+ aiℓ
)
≥ s ℓ

k . □

The following theorem characterizes the optimal reconstruction error for a frame under one or more
erasures, providing exact values for one erasure and sharp bounds for multiple erasures, with equality
achieved under a uniform coherence condition on the dual frame.

Theorem 3.11. Let F = {fi}Ni=1 be a frame for Hn such that it has a dual G = {gi}Ni=1 satisfying
∥fi∥ ∥gi∥ = n

N , ∀i.Then F (1)(F ) = n
N and for

1 < m ≤ N , F (m)(F ) ≥

√
m
(
n
N

)2
+

m(m− 1)(nN − n2)

N2(N − 1)
.

Moreover, if G also satisfies ⟨gi, gj⟩ ⟨fj , fi⟩ is a constant for all i ̸= j, then

F (m)(F ) =

√
m
( n

N

)2
+

m(m− 1)(nN − n2)

N2(N − 1)
.

Proof. It is easy to see that F (1)(F,G) =
n

N
, by Proposition 2.1 and by Remark3.9 it follows that

F (1)(F ) =
n

N
. For 1 < m ≤ N , suppose error occur in positions i1, i2, . . . , im. Then

∥EΛ,F,G∥F = ∥T ∗
GDTF ∥F

=
√

tr
(
DTFT ∗

FDTGT ∗
G

)
=

√√√√√ m∑
r=1

⟨gir , gir⟩⟨fir , fir⟩ +

m∑
j,k=1
j ̸=k

⟨gij , gik⟩⟨fik , fij ⟩

=

√√√√√√√m
( n

N

)2
+ 2Re

 m∑
j,k=1
j>k

⟨gij , gik⟩⟨fik , fij ⟩

. (3.2)
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Thus,

F (m)(F,G) = max
|Λ|=m

∥EΛ,F,G∥F =

√√√√√√√m
( n

N

)2
+ max

(i1,...,im)∈Ẽ
2Re

 m∑
j,k=1
j>k

⟨gij , gik⟩⟨fik , fij ⟩

, (3.3)

where Ẽ = {(i1, . . . , im) : i1, . . . , im distinct, 1 ≤ ij ≤ N} . it can be easily seen that∑N
i,j=1⟨gi, gj⟩⟨fj , fi⟩ =

∑N
i=1

〈
gi,
∑N

j=1⟨fi, fj⟩gj
〉

=
∑N

i=1⟨gi, fi⟩ = n. Using ∥fi∥ ∥gi∥ = n
N , it

follows that

2Re

 N∑
i,j=1
i>j

⟨gi, gj⟩⟨fj , fi⟩

 =
∑
i ̸=j

⟨gi, gj⟩⟨fj , fi⟩ = n− n2

N
. (3.4)

By Lemma 3.10, max
(i1,...,im)∈Ẽ

2Re

 m∑
j,k=1
j>k

⟨gij , gik⟩⟨fik , fij ⟩

 ≥ m(m− 1)(nN − n2)

N2(N − 1)
. Substituting into

(3.3) gives F (m)(F,G) ≥

√
m
(
n
N

)2
+

m(m− 1)(nN − n2)

N2(N − 1)
, and hence

F (m)(F ) ≥

√
m
(
n
N

)2
+

m(m− 1)(nN − n2)

N2(N − 1)
.

Finally, if ⟨gi, gj⟩⟨fj , fi⟩ = c for all i ̸= j, then from (3.4) we have c(N2 −N) = n− n2

N . Substituting
into (3.3) yields

F (m)(F,G) =

√
m
( n

N

)2
+m(m− 1)c =

√
m
( n

N

)2
+

m(m− 1)(nN − n2)

N2(N − 1)
.

□

Remark 3.12. If F is a uniform Parseval frame forHn, then by Theorem3.7, the canonical dual S−1
F F =

F is the unique 1−erasure and hence form−erasure optimal dual of F.Moreover, if F is equiangular then

the optimal value form−erasure become F (m)(F ) =

√
m(

n

N
)2 +

m(m− 1)(nN − n2)

N2(N − 1)
.

The following theorem shows that for uniform tight frames with constant cross-correlations, the
canonical dual is universally optimal for any number of erasures, and in the case of a 2-uniform dual
pair, it is the unique optimal dual for any erasure.

Theorem 3.13. Let F be a uniform tight frame for Hn. If |⟨fj , fi⟩| is a constant for all i ̸= j, then the
canonical dual S−1

F F is a optimal dual of F for m−erasure for every m ∈ {1, 2, . . . , N} . Moreover, if
(F, S−1

F F ) is a 2−uniform dual pair andG is a optimal dual of F for anym-erasure,m ∈ {1, 2, . . . , N},
then G = S−1

F F.

Proof. Let F be a tight frame with frame bound A. Then, by (2.1), ∥fi∥ =

√
An

N
, for all i. Thus,

F (1)(F, S−1
F F ) = max

1≤i≤N

1

A
∥fi∥2 =

n

N
. Then by Remark2.2, S−1

F F is a 1−erasure optimal dual frame
of F.
As F is a tight frame with frame bound A, using duality of F and 1

AF , we have
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n =
∑

1≤i,j≤N

⟨fi, 1
Afj⟩⟨

1
Afj , fi⟩ =

∑
1≤i,j≤N

1
A2 |⟨fi, fj⟩|2. Using the 1−uniformity condition of the dual

pair (F, S−1
F F ), we have

∑
i ̸=j

1
A2 |⟨fi, fj⟩|2 = n− n2

N . Using the condition |⟨fj , fi⟩| is a constant for all

i ̸= j, we have
m∑

j,k=1
j ̸=k

1
A2

∣∣⟨fik , fij ⟩∣∣2 = m(m− 1)(nN − n2)

N2(N − 1)
, for all (i1, i2, . . . , im) ∈ Ẽ.

Then by (3.2), we have ∥EΛ,F,G∥ =
√

m
(
n
N

)2
+ m(m−1)(nN−n2)

N2(N−1)
, for any Λ ⊂ {1, 2, . . . , N} with

|Λ| = m and hence F (m)(F, S−1
F F ) =

√
m
(
n
N

)2
+ m(m−1)(nN−n2)

N2(N−1)
. Then by Theorem3.11, S−1

F F is
a m−erasure optimal dual of F.

Now, we shall prove the uniqueness of S−1
F F. If (F, S−1

F F ) is a two uniform dual pair then, ∥fi∥ =√
An

N
and |⟨fj , fi⟩| is a constant, and hence F (m)(F, S−1

F F ) =
√

m
(
n
N

)2
+ m(m−1)(nN−n2)

N2(N−1)
. Let

G̃ = {g̃i}Ni=1 =
{

1
Afi + ui

}N
i=1

be a dual of F such that F (1)(F, S−1
F F ) = F (1)(F ) = n

N . Therefore,
∥fi∥

∥∥ 1
Afi + ui

∥∥ = n
N , for all 1 ≤ i ≤ N. This implies,

∥∥ 1
Afi + ui

∥∥ =
√

n
AN , 1 ≤ i ≤ N. Explicitly,

1
A2 ∥fi∥2 + 2

ARe⟨fi, ui⟩ + ∥ui∥2 = n
AN , 1 ≤ i ≤ N. Thus, 1

A2

∑
1≤i≤N

∥fi∥2 + 2
A

∑
1≤i≤N

Re⟨fi, ui⟩ +∑
1≤i≤N

∥ui∥2 = n
A . Consequently,

2

A

∑
1≤i≤N

Re⟨fi, ui⟩+
∑

1≤i≤N

∥ui∥2 = 0. (3.5)

As G̃ is a dual of F,
∑

1≤i≤N

⟨f, fi⟩ui = 0, for all f ∈ Hn. This implies, T ∗
UTF = 0, where U = {ui}Ni=1.

Therefore, 0 = tr(T ∗
UTF ) = tr(TFT

∗
U ) =

∑
1≤i≤N

⟨fi, ui⟩. So, Re

( ∑
1≤i≤N

⟨fi, ui⟩

)
= 0. Hence, by (3.5),∑

1≤i≤N

∥ui∥2 = 0, which implies, ui = 0, for all 1 ≤ i ≤ N. Thus, G = S−1
F F . □

Example 3.14. Consider the frame F = {f1, f2, f3, f4} for C2, where

f1 =

[
1
0

]
, f2 =

[
0
1

]
, f3 =

1√
2

[
1
1

]
, f4 =

1√
2

[
1
−1

]
.

It is easy to verify that F is a tight frame with tight bound 2. Therefore, its canonical dual is

S−1
F F =

{
1

2

[
1
0

]
,

1

2

[
0
1

]
,

1

2
√
2

[
1
1

]
,

1

2
√
2

[
1
−1

]}
.

One can compute
∥fi∥ ∥S−1

F fi∥ =
1

2
, 1 ≤ i ≤ 4.

Hence, by Proposition 2.1, F (1)(F, S−1
F F ) = 1

2 , and by Remark 3.9, the canonical dual S−1
F F is 1-

erasure optimal. Moreover, any dual frame G = {gi}4i=1 of F must be of the form

g1 =


1

2
− α1 + β1√

2

−α2 + β2√
2

 , g2 =


α1 − β1√

2
1

2
+

α2 − β2√
2

 , g3 =


1

2
√
2
+ β1

1

2
√
2
+ β2

 , g4 =


1

2
√
2
+ α1

1

2
√
2
+ α2

 , α1, β1, α2, β2 ∈ C.

If G is a 1-erasure optimal dual of F , then max1≤i≤4 ∥fi∥ ∥gi∥ = 1
2 . Using the fact that∑4

i=1 ∥fi∥ ∥gi∥ ≥ 2, it follows that ∥fi∥ ∥gi∥ = 1
2 , ∀i, which leads to the system of polynomial
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equations: 

(
1

2
− α1 + β1√

2

)2

+

(
α2 + β2√

2

)2

=
1

4
,(

α1 − β1√
2

)2

+

(
1

2
+

α2 − β2√
2

)2

=
1

4
,(

1

2
√
2
+ β1

)2

+

(
1

2
√
2
+ β2

)2

=
1

4
,(

1

2
√
2
+ α1

)2

+

(
1

2
√
2
+ α2

)2

=
1

4
.

Since this system has non-zero solutions, we conclude that the canonical dual is not the unique
1−erasure optimal dual of F .

Remark: This example illustrates that even for a simple tight frame, multiple distinct 1-erasure optimal
duals can exist, highlighting the potential non-uniqueness of optimal duals.

4. Conclusion

In this work, we studied the design of optimal dual frames under the Hilbert–Schmidt norm and
characterized conditions ensuring when the canonical dual is optimal or uniquely optimal for erasures.
We also constructed examples illustrating both non-uniqueness and failure of optimality, together with
sharp bounds for general m-erasures. Our results show that while uniform tight frames with constant
cross-correlations admit universally optimal canonical duals, the situation is more subtle for general
frames. A complete characterization of the set of optimal dual frames for arbitrary non-tight frames
and any m-erasures remains open, offering a promising direction for future research in frame theory
and its applications.
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[6] P. Devaraj and S. Mondal. Spectrally optimal dual frames for erasures. Proceedings - Mathematical Sciences, 133:Article

ID 24, 2023.
[7] R. J. Duffin and A. C. Schaeffer. A class of nonharmonic Fourier series. Transactions of the American Mathematical Society,

72(2):341–366, 1952.
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