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ABSTRACT. In this paper, the problem of approximating an equilibrium point that is simultaneously a
fixed point of a finite family of multivalued enriched nonexpansive mappings in Hadamard spaces is
addressed. A new Halpern extragradient-type algorithm is proposed, and the sequence it generates is
proved to converge strongly to the desired common solution. With the aid of an illustrative example
presented in a non-Hilbert CAT(0) space, the implementation and performance of the proposed method
are demonstrarted in a setting beyond Hilbert spaces. The results obtained here refine and extend recent
contributions in the literature.
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1. INTRODUCTION

A metric space (X, d) is referred to as geodesic metric space if, for any two points x,y € X, there
exists an isometry & : [0, d(z,y)] — X such that:

6(0) =, a(d(w.y) =y, and d(a(t),a(s)) = |t - s,

forall t,s € [0,d(z,y)]. The range of &, denoted by &([0,d(x,y)]), is called a geodesic segment, and
it is denoted by [z, y] when & is unique. We say that (X, d) is a unique geodesic space if, for each
pair of points z,y € X, there is exactly one geodesic joining x to y. Moreover, for a unique geodesic
space (X, d), given x,y € X, we denote a point z € [z,y] by (1 — t)x & ty, if d(z,2) = td(x,y)
and d(y,z) = (1 — t)d(x,y) for some fixed t € [0,1]. More generally, for z1,x2,...,z, € X and
t1,t2,...,tn € (0,1) satisfying >, t; = 1, the convex combination @;"_, t;z; is defined recursively
by

m m—1 +
Z-E_Bltﬂi = (1—ty) <@ 1 —Ztm%) @D tmxm, form=23,...,n,

i=1
in accordance with Dhompongsa et al. [13] as well as Salisu and Minjibir [42]. A subset D of X is called
convex if for every pair of points 2,y € D we have (1 —t)x @ty € D for all t € [0, 1].
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A geodesic triangle A\(x,y, z) in X consists of three points z, y, z € X (the vertices of /) and three
geodesic segments connecting each pair of vertices (the edges of AA). For a unique geodesic space, the
triangle is simply defined as:

A, y, 2) = [z, y] Uy, 2] U [z, 2].
A comparison triangle for /\(x,, z) is a triangle /A(Z, 7, Z) in the Euclidean space (R?, d) such that:

d(x,y) = dRQ(fvg)’ d(.’E,Z) = dRQ (E,E), d(yvz) = d]RQ (gv E)'
A geodesic space (X, d) is said to be a CAT(0) space if, for every geodesic triangle A and its correspond-
ing comparison triangle A, the following comparison axiom holds:
d(z,y) < dp2(T,7), Vz,y €/ and V7,7 € A.

A complete CAT(0) space is referred to as a Hadamard space. It is well-known that, given a nonempty
closed, convex subset D of a CAT(0) space (X, d), for each = € X, there exists a unique u, € D such
that d(x,u;) < d(z,u) for all w € D. The map = — u, for x € X and u, € D is called the metric
projection of X onto D denoted Pp.

Let {x,,} be a bounded sequence in a metric space (X, d). For z € X, we define

r(x,{zy}) = limsupd(z, z,).
n—oo

The asymptotic radius r({xy}) of {x,} is then defined as
r({za)) = inf (e ().

S

The asymptotic center A({x,,}) of {z,,} is the set
A({zn}) ={z € X :r(z,{zn}) = r({z.})}-

Remark 1.1. It is known (see, e.g., Dhompongsa and Panyanak [15]) that in a Hadamard space, A({z,})
is a singleton for every bounded sequence {x, }.

A bounded sequence {z,,} in a metric space (X, d) is said to delta converge to a point z € X if
limsup d(zy,, ) < limsupd(z,,,y)
k—ro0 k—ro0

for every subsequence {z,, } of {x,} and for every y € X. In other words, x is the unique asymptotic
center for every subsequence {x,, } of {z,}. In this case, we write Alim,,_,o z, = z, and call x the
A-limit of {x,, }. We say that {x,,} converges stronglyto a point 2z € X if it converges in the usual sense,
that is, limy,, o0 d(xy, ) = 0. In this case, we write lim,,_,~, ©,, = x, and call z the limit of {x,, }.

Remark 1.2. If {x,,} and {w,,} are two bounded sequences in X such that lim,,_,~ d(x,, w,) = 0 and
Alim, 00 T, = x, then Alim,, oo Wy = .

In what follows, unless otherwise stated, D is a nonempty closed convex subset of a Hadamard space
(X,d). We denote the family of nonempty closed bounded subsets of D by CB(D), and dist(b, A)
denotes the distance from b € X to a subset A of X, i.e.,

dist(b, A) := inlf4 d(b,a), Vbe X.
ac
The Hausdorff metric is denoted by Hy, thatis, Hy : CB(D) x CB(D) — R defined by

Hy(A, B) := max {sup dist(a, B), sup dist(b, A)} , VA, BeCB(D).
a€A beB

We recall that a map 7" : D — CB(X) is called nonexpansive if Hy(T'z, Ty) < d(z,y), Vz,y € D.
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Definition 1.3. (Salisu et al. [41]) Let (X, d) be a CAT(0) space, and let T' : D — CB(X) be a
multivalued mapping. For 6 > 0, define a multivalued mapping Ty by

0 1
Tr=1-0 v 1 o cr
o {0+1”3@9+1y yEe m}

Then T is said to be an enriched multivalued nonexpansive (or 8-enriched multivalued nonexpansive)
mapping if, for some 6§ > 0,

Hd(TgCL‘,TQy) < d(l’,y), VIE,y €D.

It follows directly from Definition 1.3 that every multivalued nonexpansive mapping is a 0-enriched
multivalued nonexpansive mapping.

We say that a multivalued mapping 7' : D — CB(D) has the demiclosedness-type property at x if,
whenever Alim,, o x, = x and lim,,_, o dist(zy,, T'x,) = 0, it follows that x € T'z. It follows from
Theorem 4.2 of Salisu et al. [41] that any enriched multivalued nonexpansive mapping T’ with compact
images satisfies the demiclosedness-type property.

Definition 1.4. Let (X, d) be a geodesic metric space. The function f : D(f) C X — RU{oo} is said
to be:

(1) convex, if
flA=traty) <A -t)f(x)+tf(y) Vo,ye X, te(0,1);
(7i) strongly convex with parameter k£ > 0, if
F(A =tz oty) < (1 —t)f(z)+tf(y) — kt(l = t)d*(z,y) Va,y € X, t € (0,1);
(7i7) lower semicontinuous (Isc) (or upper semicontinuous (usc)) at a point x € D(f), if

f(z) < hnrggff(a:n) (or f(z) > limsup f(x,)),

for each sequence {z,} C D(f) such that lim,,_,. x,, = 2. We say that f is lsc (or usc) on
D(f) if it is Isc (or usc) at every point in D(f).

An equilibrium problem (EP) is the problem of finding p* € D such that:

f(p*,y) >0,Vye D (1.1)

where f : D x D — R is a bifunction, and D is a nonempty convex subset of a CAT(0) space
X. We denote the set of solutions of (1.1) by EP(f, D). EP was first introduced in finite-dimensional
spaces by Stampacchia [45] in the 1960s in the context of variational inequalities, and was subsequently
developed by Fan [18], Blum and Oettli [9], among others. Stampacchia’s foundational work laid the
groundwork for various EP formulations, which are now central in nonlinear analysis, economics, and
optimization theory. The EP framework unifies numerous problems, including minimization problems,
variational inequalities, and Nash equilibrium problems, all of which have broad applications. For
instance, if f(z,y) = ¢(y) — ¢(z) for a real-valued function ¢, then problem (1.1) reduces to the
classical minimization problem ggll)l ©(z). In this case, a point p* solves (1.1) if and only if p* is a

minimizer of ¢ over D.
For a nonempty subset D of X, a fixed point of a multivalued mapping 7' : D — 2% is a point
p* € D such that p* € T'(p*). We denote the set of all fixed points of 7" by F'(T), that is,

F(T):={p*eD:p*eTp'}.

Fixed point theory of multivalued mappings has been developed early on by such authors as ( Eilenberg
and Montgomery [17], Strother [46], Plunkett [37], Ward [50], Nadler [35, 36], Markin [31]). In partic-
ular, Markin [31] (in 1973) investigated multivalued contraction maps via the Hausdorff metric. Since
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then, the theory has attracted considerable interest (see, e.g., Abbas et al. [2], Dhompongsa et al. [11],
Dawning and Kirk [16], Granas and Dugundji [19], Itoh and Takahashi [21], Shimizu and Takahashi
[43], Lim[29]) due to its wide applicability in game theory, differential equations, optimization, and
related fields.

To approximate solutions to (1.1), various techniques have been developed and studied in Banach
spaces as well as Hadamard spaces. One such method is the use of proximal point algorithm introduced
by Martinet [32] in the setting of Hilbert spaces, which was also used by Khatibzadeh and Mohebbi [24]
to investigate the existence and approximation of solutions of EP in Hadamard spaces. Another well-
known method is the Extragradient Algorithm, introduced by Korpelevich [27], which was utilized by
Trans et al. [48] to establish weak convergence of the sequence generated by their algorithm to a point in
EP(f,D) in the setting of Hilbert spaces. Khatibzadeh and Mohebbi [23] studied EP and reformulated
Trans’s algorithm [48] in the setting of Hadamard spaces. They proved that the sequence generated
by the algorithm A-converges to p* € EP(f, D). In further efforts, they incorporated Halpern-type
iteration to obtain strong convergence.

The advantage of considering geodesic spaces, particularly CAT(0) spaces, lies in their flexibility re-
garding convexity, monotonicity, and constraint handling. For instance, certain functions may be con-
vex in the geodesic sense but not in the classical Euclidean sense. Similarly, a mapping that is monotone
in a geodesic space may not remain monotone when interpreted in a Hilbert space; see, e.g., Da Cruz
Neto et al. [10]. Moreover, optimization problems that are constrained in a Hilbert space framework
may become unconstrained when reformulated in an appropriate geodesic setting. However, these
implications are generally not reversible. Typical examples include eigenvalue optimization problems
Smith [44] and geometric models of the human spine Adler et al. [4], where the geometry plays a
central role in reformulating the problem. These and other geometric features make CAT(0) spaces a
rich and powerful setting for studying fixed point theory and convex optimization. In the context of
fixed point theory, the work of Kirk [25] was among the first to exploit the geometry of CAT(0) spaces.
This initiated a trend of developments in fixed point results for both singlevalued and multivalued map-
pings in CAT(0) spaces (see, e.g., Abkar and Eslamian [3], Dhompongsa et al. [12], Dhompongsa and
Panyanak([15], Laowang and Panyanak [28], Minjibir and Salisu [33], Salisu and Minjibir [42]).

Building on this development in the study of fixed points of multivalued mappings, Abbas et al. [1]
considered the notion of enriched nonexpansive mappings, as introduced in Berinde and Pacurar [8]
and Berinde [7], and extended this concept to multivalued settings in Hilbert spaces. Subsequently,
Salisu et al. [41] introduced and studied the multivalued versions of enriched nonexpansive mappings
in geodesic spaces. They analyzed the fixed points of these mappings in CAT(0) spaces and established
that a sequence generated by a Krasnoselkii-Mann iterative scheme A-converges to a fixed point of the
underlying mapping.

On the other hand, certain phenomena lead to an equilibrium point that is simultaneously a fixed
point of a certain mapping. This implies that the equilibrium problem must be utilized in conjunction
with fixed point problems to address the original problem (see, e.g., liduka and Yamada [20] and Trinh
[49]). Based on this, many researchers focus on common solutions of equilibrium and fixed points
of certain mappings. For instance, Aremu et al. [6] addressed the computational cost and time con-
sumption of the problem associated with the linesearch strategy introduced by Iusem and Mohebbi
[22], which was developed to solve EP with pseudomonotone bifunctions in Hadamard spaces. They
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proposed the following self-adaptive extragradient algorithm in Hadamard spaces:

(x0,u € D,

Yn € Argmin [f(mn,y) + ﬁdQ(l‘my)] )
yeD

wy, € Argmin [f (Ynsy) + ﬁdQ(wn,y)} :
yeD
Tpp1 = apu @ (1 — ap) [Bnhn © (1 — Bp)wn),

. pld? (zn,yn)+d? (wn,yn)]
i {A"’ 2 (wn,wn)—f @nyn)— (Y02 )] } )

Ant1 = 'Lff(xna wn) - f(xna yn) - f(ynawn) > 0,
Ao, otherwise,

(1.2)

where h,, € Tw,, and )\, is the adaptive parameter. They established that the sequence {x,,} gener-
ated by the algorithm (1.2) converges strongly to a common solution of problem (1.1) and fixed point
problems for a multivalued nonexpansive mapping.

In 2022, Ali et al. [5] used Halpern-extragradient algorithms to approximate common solutions of EP
and fixed point problems for a finite family of bifunctions and nonexpansive mappings, respectively.
They proved that the sequence {x,} generated by the following algorithm converges strongly to a
common solution of the problems:

u,x1 € X chosen arbitrarily,
2t = argmin{ fi(xn,y) + idQ(yﬂ;n), i=1,2,3,--- ,N},
yeD

y! = argmin{ fi(z!,y) + %dQ(y,xn), i=1,2,3,--- N},
yeD m (13)

in = argmax{d?(y’,z,), i = 1,2,3,--- , N}, 7, = yin,
Wn = Vn,0Yn EB;nzl Yn,j LjTn,
Tptl = Bnu @ (1 - ﬁn)wmn > 1.

The purpose of this work is to to provide iterative algorithms for approximating a common solution
of EP and fixed point problems for certain classes of nonexpansive mappings in Hadamard spaces.
Specifically, this work builds on the approaches of Khatibzadeh and Mohebbi [23] and Salisu et al. [41]
to propose an iterative algorithm for approximating a solution of an equilibrium problem that is also
a fixed point of a finite family of multivalued enriched nonexpansive mappings in Hadamard spaces.
This method incorporates the extragradient technique, which is known for faster convergence, and the
Halpern technique to ensure the strong convergence of the generated sequence. The method specifically
seeks to approximate p* € D such that

fp*,y) >0, VyeD;
m

p* € NTip*,
=1

(1.4)

where f : D x D — R is a bifunction and 7; : D — 2P is multivalued enriched nonexpansive
mappings, for each i = 1,2,...,m for some m € N, D C X, where (X, d) is a Hadamard space.

2. PRELIMINARIES
In this section we collect some lemmas that are necessary for the main results of the paper.

Lemma 2.1 (Dhompongsa and Panyanak [15]). Let (X, d) be a CAT(0) space, with x,y,z € X and
t € [0,1]. Then

(1) d(tz ® (1 — )y, z) < td(x,2) + (1 —t)d(y, 2);
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(i1) d?(tx © (1 —t)y, 2) < td*(x, 2) + (1 — t)d?(y, 2) — t(1 — t)d*(z,y).

Lemma 2.2 (Tang [47]). Let (X, d) be a CAT(0) space. Let {x;,i = 1,2,...,m} C X and o; € [0,1]
fori=1,2,...,m, such that ;" a; = 1. Then,

d (é Ozi:cl-,z> < iaid(azi,z), Vz e X.
i=1 i=1

Lemma 2.3 (Dhompongsa et al. [14]). If{x,} is a bounded sequence in a closed and convex subset D of
a Hadamard space, then the asymptotic center of {x,, } is in D.

Lemma 2.4 (Kirk and Panyanak [26]). Every bounded sequence in a Hadamard space has a A-convergent
subsequence.

Lemma 2.5 (Dhompongsa et al.[14]). If{z,} is a bounded sequence in a Hadamard space (X, d) with
A({z,}) = {=x}, and {u, } is a subsequence of {x,,} with A({uy}) = {u}, and the sequence {d(x,,u)}
converges, then © = u.

Lemma 2.6 (Salisu et al. [41]). Let (X, d) be a Hadamard space and T : D — CB(X) be a mapping.
For @ > 0, let Ty be as in Definition 1.3. Then F(Ty) = F(T).

Lemma 2.7 (Salisu et al. [41]). LetT : D — CB(X) be a §-enriched multivalued nonexpansive mapping.
Suppose that F'(T) # () and Tp* = {p*} forp* € F(T). Then, the set F(T) is closed and convex.

For a bifunction f : D x D — R, consider the following assumptions:

(A1) f(x,-): D — Ris convex and lower semicontinuous (Isc) for all z € D;
(A2) f(-,y): D — R is upper semicontinuous (A-usc) for all y € D, i.e., if g,y € D, then

f(ﬂj’o, y) > hmsup f(xnay)7
n—oo

for every sequence {z,,} C D satisfying A lim,, ;o =5, = ;
(A3) f is Lipschitz-type continuous, i.e., there exist 1,72 > 0 such that

f(x>y) + f(y7 Z) > f(x’ Z) - T1d2($, y) - r2d2(y, Z)a V$7y> S Da
(A4) f is pseudomonotone, i.e., if f(x,y) > 0, then f(y,z) <0, forall z,y € D.

Lemma 2.8 (Moharami and Eskandani [34]). If a bifunction f satisfies conditions (A1), (A2), and (A4),
then EP(f, D) is closed and convex.

Lemma 2.9 (Xu [51]). Let {a,} be a sequence of non-negative real numbers satisfying
An+41 < (1 - an)an + O‘nén +Yn, N = O»

where {a, }, {0, }, and {~,,} satisfy the following conditions:
(i) {an} C[0,1) and 77§ ay = 00;

(ii) limsupd, < 0;

(iil) vp, > 0and > 07 o n < 0.
Then, lim,, o a, = 0.
Lemma 2.10 (Mainge [30]). Let {a,} be a sequence in R such that there exists a subsequence {a,,} of
{an} with an; < an;11, for all j € N. Then, there exists a non-decreasing sequence {T(n)} such that
lim,,_,o, 7(n) = 00, and for some n > ny,

Qr(n) < Qr(n)+1 and a, < Qr(n)+1, 70 € N.

In particular, T7(n) := max{i <n:a; < @41}
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3. MAIN ResuLTs
In this section, we state and prove the main results of this paper. Let the set of solutions of (1.4) be
denoted by @, i.e.,
$ = ﬁlF(Ti) nEP(f,D).
Form € N,letT; : D — CB(D) be a ;-enriched multivalued nonexpansive foreachi € {1,2,...,m}

and f : D x D — R be a bifunction satisfying (A1) — (A4). Choose u, xo € D and define a sequence
{z,} iteratively by

wy, = argmin [f(ﬂ:n, Y)+ 3 dQ(:cn,y)} ;
yeD

Yo = axgmin | f(wn, ) + 7h=d>(@n, )] |

yeD (3-1)
(%)
o=y © (1 - (0))@ms$f), 5% € Ty ym,
(Tn+1 = onu @ (1 —o0pn)zn, Yn >0,
where Ty, y,, = {%yn @ @,—ng) o) € Eyn} {on}, {\n} and {an i =1,2,...,m are se-

quences satisfying the following conditions:
(C1) {0} C (0,1) such that 7112200" =0and ) 70y, = 00;

(C2) {ani I C (0, 1)suchthat0<7]<a7(f)<,u,<1W—O,I,Q,...,mandzyioag):1;
C)0<a<s<A\ <b< mm{%1 }andhmmf(l —2rj\,) >0, for j =1,2and Vn > 0.

) 27‘2

It is worth noting that for any z,y € X, the function ¢ := f(x,-) + d?(y, ) is strongly convex, as
it is the sum of a convex and a strongly convex function. Consequently, ¢/ has a unique minimizer.
Therefore, y,, and w,, are well-defined, which guarantees that algorithm (3.1) is well-defined.

Lemma 3.1. Let (X, d) be a Hadamard space, and let D be a nonempty closed convex subset of X. For
eachi=1,2,...,m (m € N), letT; : D — CB(D) be a family of 6;-enriched multivalued nonexpansive
mappings, and let f : D x D — R be a bifunction satisfying assumptions (A1) — (A4). Let {x,}
be a sequence generated by Algorithm (3.1). Suppose ® # 0 and T;p* = {p*} for all p* € ® and
i € {1,2,...,m}. Then, the sequences {x, }, {zn}, and {y,} are all bounded.

Proof. From the assumption on ®, Theorem 2.7, and Lemma 2.8, we have that ® is nonempty, closed,
and convex. Let p* € ®. For any t € [0, 1), consider ¢, = ty, ® (1 — t)p*. Then, by condition (A1)
and Lemma 2.1(ii), we have

f(wn, yn) + 7d (Tn,yn) < f(wn, Un) + 7d (Tn, Yn)

2An 2\,
< tf(wna yn) + (1 - t)f(wmp ) + %(td (xnvyn)
+ (1= O)d* (20, 0) — (1 = £)d*(yn, 7). (3.2)

Since f(p*, wy,) > 0, pseudomonoticity of f implies that f(w,,p*) < 0. Hence, (3.2) gives

(1 - t)f(wna yn) ((1 - t)d (xn,p*) - (1 - t)dz(xmyn) - t(l - t)d2(yn,p*)] .

1
2\
This implies

f(wn,yn) < % (d*(zn,p*) — d*(@n, yn) — td* (yn, p*)) -
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By allowing ¢ — 1~ we have

F(wn, yn) < % (& (2n, p*) — d* (0, Yn) — @ (Y, p*)) - (3.3)

Similarly, setting ©,, = tw, ® (1 — t)yy, for any ¢t € [0,1), by definition of w,, in algorithm 3.1,
assumption (A1) and Lemma 2.1(ii) yield

f (@, wn) + LdQ(xnawn) < f(@n, On) + Ldg(xm{’n)

2\, 2X\n
1
< tf(xnv wn) + (1 - t)f(xnayn) + W(tdz(‘rna wn)
+(1- t)dQ(a:n, Yn) — t(1 — t)d2(wn,yn)). (3.4)
This implies
1
f(xm wn) - f(xna yn) < K[dQ(fEna yn) - d2(xn, wn) - td2(wn, yn)]
By setting ¢ — 17, we obtain
1
f(@n, wn) — f(@n,yn) < K[dQ(mn,yn) — d2(:vn, W) — d2(wn,yn)]. (3.5)
n

Since f satisfies (A3) there exist 1, 72 > 0 such that

_Tldz(‘rm wn) - T2d2(wnv yn) + f(xm yn) - f(xnv wn) < f(wm yn) (3'6)
From (3.5) and (3.6), we have

1

K[dQ(l‘na Yn) — d2($n, Wy) — d2(wna Yn)] < f(Wn,Yn),

—r1d? (T, wy) — rod? (wn, Yn) —

which implies

1 2 1 2 1 2
— — - < _ ,
<2)\n 7"1> d*(Tn, wn) + <2)\n 7"2> d*(wn, Yn) 2/\nd (Tn, yn) < f(wn, yn) (3.7)

From (3.3) and (3.7), we have

1 2 1 2 1 2
<2)\n 7“1) d (-rmwn) + (2)\11 T2> d (wmyn) 2)\nd (:L'nayn)

1 N X
< K[dQ(xmp ) - dQ(xnayn) - d2(ymp )]
Therefore,
(1= 2r1 A)d* (2, wn) + (1 = 2ro M) d* (Wi, yn) < d* (20, p*) — d*(yn, p"). (3.8)

From (C3), this gives

d*(Yn,p*) < d* (2, p"). (3.9)
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Using (3.9), Lemma 2.1(i), Lemma 2.2, condition (C2), and the fact that 7; is a 0;-enriched multivalued
nonexpansive mapping for each i € {1,2,...,m}, we have

moG
Az, %) < 0O d(ga,p) + (1 — a®)d (@%SS)’P*>

im1 (1 —an”’)
m a(i) .
< agLO)d(yn’p*) + (1 - ago))Z%d(sS),p*)
i1 (1—an’)

= o Dd(y,, p*) + Zag)dist(sg), Ty,p*)
i=1

ol Hy(Ty,yn, To,p*)

WE

< ago) d(ym p*) +
1

.
I

< d(yn,p")
< d(xp, p").
Therefore,
d(zn,p") < d(zn, p"). (3.10)

On the other hand, using Lemma 2.1(i) and (3.10), we obtain

d(xpi1,p") = d(opu® (1 — o)z, p¥)
< ond(u,p*) + (1 — 05) ,p%)
< ond(u,p*) + (1 — op)d(zn, p*)
< max{d(u, p"), d(zy,p")}

Zn

d(
d(

< max{d(u, p*),d(xo,p")},

for all n > 1. This implies that {z,,} is bounded. Consequently, by (3.9) and (3.10), {2, } and {y, } are
all bounded. g

We now state and prove the main convergence theorem of algorithm (3.1).

Theorem 3.2. Let X, D, T;, and f be as in Lemma 3.1. Suppose ® # 0, T; has demiclosedness-type
property and T;p* = {p*} for allp* andi € {1,2,...,m}. Then, the sequence {x,} generated by (3.1)
converges strongly to Pyu.

Proof. Let p* = Pgpu. We split the proof into two separate cases:

Case I: Suppose that {d(z,,p*)} is eventually a monotone non-increasing sequence, i.e., {d(zy,p*)}
is monotone non-increasing for n > ny, for some fixed ng € N. Then, lim,, o d(x,, p*) exists in R,
and

lim [d*(zn41,p%) — d*(zn,p*)] = 0. (3.11)

n—o0
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Step (i): We claim that nh_{%od@"? Wp) = nli_{rgod(wn, Yn) = nli_)rgod(xn, yn) = 0. To establish the claim,
we utilize (3.10), Lemma 2.1(ii) and the condition (C1) to obtain
7111};@ [dQ(O'n’LL @ (1—on)zn,p*) — dz(a:n,p*)]
< h,,ﬂgjf [0nd?(u,p*) + (1 — 0)d* (2, p*) — o0 (1 — 0)d? (u, 2,) — d* (20, P*)]
+ (L= 03)d* (2, ") — d* (5, p")]

= lim o, [d2(u,p*) — d2(zn,p*)] + lirginf [dz(zn,p*) — dZ(xn,p*)]

< liminf [0,d*(u, p*)

n—

n—oo
R T 2 *\ g2 *
= hnni}g.}f [d (2n,p*) — d*(xn, p )]
< limsup [dg(zn,p*) — dQ(SUmp*)]
n—oo
<0.

Therefore, using (3.11), we have

: 2 *\ g2 ]
im [d*(z,, p*) — d(an, p*)] = 0. (3.12)
n () %
Adopting the idea of Salisu et al. [40], let l( ) o) sg,,),
z-l’Yk

where ’yk : Zanl), kEe{l,2,...,m}, neN.
= (”) (n)
Then, Vli ") € (0, 1) (n> > a(l) l(n) = ’y"(n)ll(n) o< (n) S%), fork = 2,3,...,m, %n) = al and

lgn) = 57(1 ) By Lemma 2.1(ii), we have the followmg estimate

,y(") a(k)
2.5 = (Ui, 0 % 0,
Yk Tk
< k(;)l dQ(lz(;i)pp*) + %dQ(S%k)yp*) - %(;)1 %dz(ll(;i)p si)
Vi Tk Te Tk

=2

(n)

1 n n * * r)/ - n

L et et - B, o)
Tk

<~ AR ) + aPd(s),p) - aDalPd ), sP))|

o
1
e

P p7) < 5 [ d2 ) 1 p7) + P d (0, p7) — alDalm (1) 5|

m

(n) (m-1)
5[V ™ g2 (7’2;)2%(%)2 ® L( ) s%m_l),p*) +al™d?(si™, p*)
Tm=1 m—1

a2 sy
[ (n )2d2(l( n) )+C¥£Lm_1)d2(sglm_l),p*)—{—Ol;m)dQ(S%m),p*)

m=2:D

im0 ) — alafm a2l s

m—1’°n
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1 n — — * m m *
= T[’an)gdz’(lfn) 2:0") +al" VA (s %) + e (s p)
m
—alDa{mVa ), s — alDalmd ) |, sim))
= wbm Tdad (U0 ) + D alDd (D) = D allad ("), s0)]
Ym i=m—1 i=m—1
1 n m— m— * S i 7 *
< mhm o215 ") + oD (5D )+ Y ald (s, p)
Ym i=m—1
_a(l)a(m 2)d2(lﬁ,’j 48 (m 2 Z a l”)l,snz))]
i=m—1
= " )[’YT(n)SdZ + Z Oél)dz *) . Z Oég)a(l)dQ(ll(n)l’ 7(;,))]
TYm i=m—2 i=m—2
< Lo )d2(l(n) )+§m:a(z)d2(s(i) ) —Em:a() ()dQ(l(") (1))
- (”) ’ : n o
Ym =2 =2
1 n 1
= o ZO‘ (s Za(” gus ,sn>>]
Ym
1 < n
= Z oD dist Ty.p") — Z anl)agf)d%lz(_)l, snz))]
Tm i=2
1 " n 7
< b ST T - 3ol ()|
Ymo Li=1 i=2
1 S 7 * G 7 n 1
< W Zaw(l)dQ(yTMP ) - Za(l)a( )d2(lz(_)175n))]
Ymo Li=1 i=2
1 m
_ g2 * 1 i) 32 /7(n) i
=d (yn7p ) - Wzag)a'gz)d (lz—lasn))
Tm~ =2
Therefore,
(n) 2 (1) n) (i)
(15, p*) < d*(yn, p") 7(71) Za 20, 5. (3.13)
It follows from (3.9), Lemma 2.1(ii), (3.13) and condition (C2) that
— 1 2 (0 ()(n) _ 2 *
0= lim [d ( Yn D Y Ly, ) d*(xp,p )]
< lirr_ginf[oé% d? (Yn,0") + 'Yr(n)dQ(l( ) ) — 047(10)77(7?)612(3/117 lfg)) - dz(xn,p*)]
1 & . )
a0 (n) [ 42 Y (1) o, @ g2 (@)
< 1lnrr_l>£f[ d ( )‘F’Y (d (ynvp ) 77(:) Z;O‘n ) d (lz—psn ))

A o ) — ()
< lirginf[ago)dQ (yn,p* )—G—’)’,(n)dQ(y ,p¥) — dQ(ZEmp*)].
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Since
lim inf[af?d? (yn, p*) + 750 d* (yn, p") — d* (. ")) = lim inf [d? (yn, p*) — d (2n, p")]
= limsup [d® (yn,p*) — d*(zn,p")]
<o
we obtain
Tim [d? (g, p*) — d*(n, p)] = 0. (3.14)

On other hand, from (3.8) and (3.14), we have
lim inf [(1 — 211 A )2 (2, wy ) 4 (1 — 2ro, ) d> (wh, Yn)]

n—o0
< lim sup [(1 — 2\ A2 (2, ) + (1 — 2r2)\n)d2(wnayn)]
n—oo
. 2 * 2 *
< lim [d*(2n,p") — d*(yn, p")]
=0.

The fact that (1 — 2r1\,)d? (2, wy) + (1 — 2720, )d%(wn, yn) > 0 (from condition (C3)) and the
foregoing inequality yield

lim [(1— 27 An)d? (@, wn) + (1 — 2raX,)d* (wn, yn)] = 0,

n—oo

which implies that
lim (1 — 2r A\, )d? (2, wp) = 0 and lim (1 — 279),)d? (wn, yn) = 0.

n—o0 n—oo

By condition (C3), we obtain

lim d*(x,,w,) = 0and lim d?(wy,y,) = 0.
n— 00 n—o0

Consequently,

lim d(xy,w,) = 0and lim d(wy,,y,) = 0.
n—oo n—oo

We also note that
d(wmyn) < d(wmwn) + d(wmyn) —0 (n — OO)

Hence,
nli_)rgod(xn, Wy) = Jln;od(wn, Yn) = nli_)rglod(xn, Yn) = 0. (3.15)
Step (ii): Next we show that lim dist(xy,, Ty, ) = 0. By Lemma 2.1(ii), (3.13) and (3.9) we have
n—o0

moG)
P (2 ) = & (4 & (1 o)D" -0 p"
im1 (1 —an”)

= d’ (aq(m())yn ® 75#”%%19*)

<l d (yn, p*) + AP, p7) = DA d? (yn, 1)

< alDd? (yn, p*) + ) [dz(yn,p*) - % S aPada™), Sﬁf))]
Ym' =2

— a0y (y,,, 101))

m

= a0 d (yn, p*) + 1D P (g, p*) — > aPaD (1", s9)
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O~ 2y, 1))

3

< d(yn,p*) — V™ d?(y, ZO‘ D a2 s0)
< d(xn,p*) — Dl d? (y,, 1)) Za“) (1™, s9).
Thus,
( ) (m d2 yn7 +Za(1) ln 78;)) S dQ(xn7p*) —d2(zn,p*),

So, using condition (C2) of algorlthm (3 1), we get
02 (g, 1)) + Sy P2 (L), W) < A, p) = d2(z0, ),

which implies
n i 1 * *
(o 1 +Zd2 U 0) < Sld(anp") = &z, 0. (3.16)

By (3.12), we obtain from (3.16) that

. 2 (n) 207(m) (|
Tim | d* (yn, 1 )+Z;d @™, sy | =o.
It follows that for each i € {2,3,...,m},
hm dQ(yn7 1Y = 0 and hﬁm d2(l1(n)1, sy =0
Consequently,
lim d(yn, M) =0 (3.17)
n—oo
and 4
hm d(l(n)l, ,(f)) =0, foreachi € {2,3,...,m}. (3.18)

It follows from definition of @ that
diSt(ynaT91yn) < d(yn, (1))
<d(sW, 15y +aS il + -+ a(l™ 1) 4 a1 yy)

m—17"m
o o® alm
= _d(sM, ) 4 d(l(n) Gy 4o 2 d(l(”)D M)y 4 d(1™ y,,)
(n) TATm 2T ( ) Sn Alm) T
72 73
<d(i™, sy +d1§”, sy + 4 dat SW) +d(I) ). (3.19)
Similarly, for each i € {2,3,...,m},

dISt(ym T9 yn) < d(yna 351))
<d(sD 1) +d@™ 1™y 4 @™ 1y £,y

i—17"

, NO) , (m)
= d(s), 117 + () s $:>>+---+“?)d<mh, o)+ (5, ya)
fy'L ’.Ym
< d(sD 1) + a1, sD) + -+ dD 1 s0) + dI, y). (3.20)

Therefore, from (3.17), (3.18), (3.19) and (3.20), we obtain
lim dist(yy, Tp,yn) =0, Vi =1,2,...,m. (3.21)
n—oo
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By taking infimum over gq(f) € Ty, xp, using d(z,, gy(f)) < d(xn,yn) + d(yn, s,(f)) + d(sg), gs)) and the

fact that T}, is nonexpansive, we have

—~

dist(zn, Tp, ) < d(Tp, yn) + d(yn, s9) + dist(s), Ty, z,,)
< d(l‘n, yn) + d(yna S Z)) + Hd(TGiym Teil‘n)

< 2d(wn7 yn) + d(yna 57(11)) (3.22)

IS

Also, taking infimum over sq(f Ve 9, Yn on (3.22), we have

dist(zn, Ty, v5) < 2d(Tn, yn) + dist(yn, To ) Yn)- (3.23)
Using (3.15) and (3.21), we obtain from (3.23) that
lim dist(xy,, T, x,) = 0, foreachi =1,2,...,m. (3.24)
n—oo

Step (iii): We show that, if {z, } is a subsequence of {z,, } such that z,, N g, then ¢ € ®. For this,

let {z, } be a subsequence of {z,} such that =, 2, q. From the demiclosedness-type property of
T;, (3.24) and Lemma 2.6, we obtain

de NF(Ty) = NFT).
Next, we show ¢ € EP(f, D). From (3.3), (3.7), (3.14), (3.15) and the fact that {ﬁ} is bounded, we have
h_)m f(wn, yn) = 0. (3.25)

For each ¢t € [0,1) and ¢ € D we have ty, ® (1 — t)q € D. By definition of y,, in algorithm (3.1),
assumption (A1) and Lemma 2.1(ii), we have

f(wmyn) + idQ(xm Yn) < f(Wn, tyn © (1 - t)‘]) =+ Ldg(mmt:l/n ® (1 - t)Q)

2\ 2
< 4 () + (1= OF () + 5 s )
(1= (w0, q) — (1 — (Y, ).

This implies

£ n) = F (0 0) < 5 [0 (. 0) = () — 1y 0)]
Letting ¢ — 17, we have

£, ) = F(uns0) < 51 [ n,0) = (i) = P (unsa)].
which becomes

i [ ) & € (00,0) = 0,0)] < Fwn,) — Fwn ). (3.26)
It follows from (3.26) that

e ) [0, + s )] < Fn,) = ). (327)

By (3.15) and the fact that A lim z,,, = ¢, and Remark 1.2, we obtain that A lim w,, = ¢. Using
k—o0 k—o0

(3.15), (3.25) and assumption (A2) we have, from (3.27), that
0< hin sup [f(wnk’ Q) - f(wnka ynk)]
—00
< limsup f(wn,, q)

k—o0
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< f(4,q), Vg € D.

This implies ¢ € EP(f, D). Hence, § € ®.
Step (iv) Finally we show that x,, — p* as n — oco. By definition of z,1, (3.10) and Lemma 2.1(ii), we
have for any p € ®,

P(2n11,7) < 0nd(1,p) + (1= 0)d2 (2, p) — on(1 = 0)d (11, 20)
< (1 = 0p)d*(zn,p) + 04 [d2(u,p) — (1 = 0,)d*(u, zn)] ) (3.28)
From (3.28),
P(wn11,0%) < (1= 02)d2 (@0, p") + 00 [, p") — (1 — o), 2)] . (3.29)
To show that d(x,, p*) — 0, as n — 00, by Lemma 2.9, it is suffices to show that

lim sup [dz(u,p*) — (1 = 0p)d*(u, z)] <0.

n—oo

By triangular inequality, (3.15) and (3.17), we obtain

d(2, 1) < d(2n, yn) + d(yn, ITV) = 0 as n — co. (3.30)

Now, by definition of z,, and Lemma 2.1(i) we have

d(zn,zn) =d (mn oDy, & (1 - a(o))éag)s(iv
7 o ! i= (1 —047(10)) !
=d (xn, oDy, @ ’yﬁ,?)lﬁ,’j))

< a0d(@n, yn) + 1P d (2, 1I7). (331)

Therefore, using (3.15) and (3.30), we get from (3.31)
lim d(xy, z,) = 0. (3.32)

n—oo

Let {2, } be a subsequence of {z,}. Since {x,} is bounded, so is {z, } and therefore there exists a
subsequence {x,, } of {x,, } suchthat A lim z,, = ¢, which in turn, by (3.32) and Remark 1.2, gives
J J—00 J

A lim Iy, = §. Therefore, by A—lower semicontinuity of d?(u, -), we have
j—00

tim sup [d(u, p°) = (1 = )% (w,20)] = T [d2(u, p°) = (1 = 00, )d (1, )]

n—o0

= lim [d2(u,p*) —(1- Unkj)d2(u, Zny, )}

j—00
< d*(u, p*) — d*(u, §). (333)

Since p* = Ppu, then d?(u, p*) < d?(u, 2), ¥z € ®. As G € ®, we obtain
d*(u, p*) < d*(u, §). (3.34)

Thus, by (3.33) and (3.34), we get
lim sup [d2(u,p*) — (1 —0,)d*(u, zn)] <0.

n—oo

Hence, d(x,,p*) — 0, ie, z, — p* asn — oo.

Case II: Suppose that {d(z,,p*)} is not eventually nonincreasing sequence, i.e., there exists a subse-
quence {d(xy, ,p*)} of {d(zy,p*)} such that

d(xnk’p*) S d(xnk+lap*)7 Vk S N



228 M. S. MINJIBIR, J. A. MUSA, S. SALISU

By Lemma 2.10, there exists a nondecreasing sequence {7(n)} for n > ny, satisfying 7(n) — oo as
n — oo and the following estimate holds:

d(x'r(n)ap*) < d(xr(n)—‘rlap*) and d(-r?%p*) < d($7(n)+17p*)7 (3:35)

where 7(n) = max{j <n :d(z;,p*) < d(xj11,p*)}. From algorithm (3.1), Lemma 2.1(ii) and the fact
that 0,y — 0 (0, — 0 and 7(n) — oc), we have

lim sup [d2(z7(n)+),P*) - d2(£7(n)7p*)]

n—oo

<lim sup [JT(n)d2(u,p*) +(1- UT(n))dQ(zT(n),p*) — dQ(xT(n),p*)]

n—oo

<lim sup [JT(n)d2 (u,p*) + (1 — O-T(n))d2(x7(n),p*) - d2($7.(n),p*)]

n—oo

=lim sup Tr(n) [d2(u,p*) - d2($7(n)7p*)]

n—oo

=0.
Thus, using (3.35) we get

lim [d2($T(n)+1,p*) - d2($’r(n)ap*)] =0. (3.36)

n—oo
Following the same argument as in Case I, with n replaced by 7(n), we have:
e (3.12) holds, i.e.,

nh—>nolo [d2(z7'(n)ap*) - d2($7(n)ap*)] =0; (3:37)
e (3.14) holds, i.e.,
: 2 *\ g2 * . n.
nh—>ngo [d (yT(TL)7p ) d ("'BT(n)ap )] =0; (3.38)

e (3.15) holds using (3.38), i.e.,

Jim d(z7(n), wr(n)) = M d(wr(n), Yr(m)) = M d(27 (), Yr(m)) = 0. (3.39)
Also,
e (3.17) and (3.18) hold from (3.16) and (3.37), i.e.,
i (r(n)y —
nh_)rrolod(yT(n), L))y =0, (3.40)
and
lim d(17, gl ) =0, fori=1,2,....,m. (3.41)
n—oo
Similarly,
e (3.21) holds from (3.40) and (3.41), i.e.,
lim dist(y-(n), T9;Yr(n)) = 0, fori=1,2,...,m; (3.42)
n—oo

e (3.24) holds from (3.39) and (3.42), i.e.,

lim dist(2 (), Tp; Tr(n)) = 0, fori =1,2,...,m; (3.43)
n—oo
and
e (3.25) holds from (3.38) and (3.39), i.e.,

n—o0
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From definition of x,,11 in algorithm (3.1), if n is replaced by 7(n), using Lemma 2.1(ii), we also get
from (3.29) that

d2(x‘r(n)+17p*) < (1 - JT(n))d2($T(n)7p*> + Or(n) (dQ(u?p*> - (1 - U‘r(n))dQ(ua ZT(n))) : (3.45)
By (3.35), we have from (3.45) that

dQ(:‘CT(n)vp*) < (1 - O-T(n))d2(m7'(n)ap*) + Or(n) (d2(uap*) - (1 - UT(n))dQ(ua ZT(n))) .
This implies
d2($7.(n),p*) < d2(uap*) - (1 - UT(n))dQ(ua ZT(TL))' (3.46)
To show that ILm d* (75, p*) = 0, it suffices to show that
lim sup (d2(u’p*) - (]‘ - JT(n))dQ(ua ZT(TL))) <0.

n—o0

Since (3.32) holds with n replaced by 7(n) from (3.39) and (3.40), i.e.,
lim d(mT(n), ZT(TL)) =0, (3.47)

n—oo

let {pn} be a subsequence of {2, } such that
hIH_>SU.p [d2(u7p*) - (1 - UT(n))dQ(u7 ZT(TL))] = h_>m [dQ(uvp*) - (1 - 5n)d2(uapn)] ) (348)
n—oo n—oo

where {7,,} is a subsequence of {0,,} with the same index as {p,,}. Let {&,} be a subsequence of

{%+(n)} having the same index as {py, }. Since {7 ()} is bounded, it follows that {;,} is bounded, and

so, there exists a subsequence {g,} of {Z,} such that A lim ¢, = §. Let {p,,} be a subsequence of
n—oo

{pn} having the same index as {§,, }. Then, by (3.47) and Remark 1.2 A ILm Pn = q.

Therefore, by A—lower semicontinuity of d?(u, -), we have
lim sup [d2(uap*) - (1 - UT(n))dQ(uv ZT(n))] = khm [dQ(uvp*) - (1 - 5n)d2(u7pn)}
n—00 —00

= lim [d*(u,p*) — (1 — 65)d*(u,pn)]

n—o0

< d2 (U,p*) - d2 (U, qA)v (349)

where {5,,} is a subsequence of {7, } with the same index as {§,, }. Similar arguments as in Step(iii)
give § € ®. Since p* = Pygu, it follows that

& (u,p") < d*(u, q).
Thus, by (3.49) we get
lim sup [dQ(uvp*) - (1 - O—T(n))dQ(@% z’r(n))] <0.

n—oo
By the foregoing inequality, we obtain from (3.46) that
lim d*(z,(n),p*) = 0. (3.50)

n—oo

Moreover, by (3.35) d(zy, p*) < d(2r(5)41,P")- It follows from that (3.45) and (3.50)
lim d(z,,p*) = 0.

n—oo

Hence, from Case I and Case Il we conclude that {z,, } converges strongly to p* = Pgpu. This completes
the proof. 0

Consider the family of nonempty compact subsets of D, denoted by KC(D). Then, the fact that any
enriched multivalued nonexpansive mapping 7' with compact images satisfies the demiclosedness-type
property, we obtain the following result.
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Corollary 3.3. Let (X, d) be a Hadamard space, and let D be a nonempty closed convex subset of X . For
eachi=1,2,...,m (m eN), letT; : D — K(D) be a family of 0;-enriched multivalued nonexpansive
mappings, and let f : D x D — R be a bifunction satisfying assumptions (A1) — (A4). Suppose ® # ()
and Tip* = {p*} forallp* € ® andi € {1,2,...,m}. Then, the sequence {x,} generated by (3.1)
converges strongly to Ppu.

If m = 1, then we have the following result for approximating a common solution of equilibrium
and fixed point problems for the enriched multivalued nonexpansive mapping 7":

Corollary 3.4. Let X, D, and f be as in Theorem 3.2. Let T : D — CB(D) be a 0-enriched multivalued
nonexpansive mapping that satisfies demiclosedness-type property. Suppose ® # () and Tp* = {p*}. Let
u,xo € D, and let {x,,} be a sequence generated by

wy, = argmin [f(mn,y) + ﬁdQ(ﬂﬂmy)] )
yeD

n = argmin Wy, 1Y) + L2 T, } ,

Zn = OnYn S¥ (1 - an)sna Sn € Teym
Tyl = opu® (1 —op)zn, Yn >0,

where Tpy,, := {%yn @ ﬁvn tup € Tyn}, and {0}, {\n}, and {«,, } are sequences satisfying the
following conditions:

(C1) {on} C (0,1) such thatlim, oo 0y, =0 and Y > oy, = 00;

(C2) {an} € (0,1) suchthat0 <n < ap, < p<1;

CHO<a<< A\ << min{ L1 } andliminf, (1 —27;\,;) > 0, forj = 1,2 andVn > 0.

2r1) 2ra
Then, the sequence {x,,} converges strongly to Pgpu.
Considering the case when Tj.y, = T;y, foreach i = 1,2,...,m (m € N), we have the following

corollary for approximating a common solution of equilibrium and fixed point problems for a finite
family of multivalued nonexpansive mappings 7;:

Corollary 3.5. Let X, D, and f be as in Theorem 3.2. For eachi = 1,2,...,m, with some m € N,
let T; : D — CB(D) be a family of multivalued nonexpansive mappings that satisfy demiclosedness-

type property. Suppose 2 := F%IF(TZ) N EP(f,D) # 0 and T;p* = {p*} for all p* € Q, for each
1=
i€ {1,2,...,m}. Then, for arbitrary u, xo € D, the sequence {x,} generated by

wy, = argmin {f(mn,y) + idQ(xn,y)] ;

yeD
Yn = argmin [f(wm y) + ﬁdQ(ﬂfm y)} ;
yeD (3.52)
G (1) i i
2 = OC'SZO)yn @ (1 - 06510))@ n 351)7 st € Tiyn,

i=1 (1—ai’)

Tyl = opu® (1 —op)zn, VYn >0,

where {0}, {An}, and {agf)}n fori=1,2,...,m are sequences satisfying the following conditions:
(C1) {on} C (0,1) such thatlim,_,oo 0y, = 0 and Y _oc o 0 = o0;
(C2) {a£3>}n C (0,1) such that0 < n < agf) <u<1,foralli=0,1,2,...,m,and ¥\ a,(f) —1;
(C3) 0<a< A, <b<min {ﬁ, ﬁ} andliminf, (1 —27;\,) > 0, forj = 1,2 and Vn > 0.

The sequence {x,,} converges strongly to Pou.
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Furthermore, if we set the equilibrium bifunction to be the zero map in algorithm (3.1), we get the
following corollary for approximating common fixed points for a finite family of enriched multivalued
nonexpansive mappings.

Corollary 3.6. Let X, D, and T; be as in Theorem 3.2. Suppose ¥ := T(YWLIF(E) # (0 and T;p* = {p*}
1=
forallp* andi € {1,2,...,m}. Then, the sequence {x,,} generated by

u,xg € D,
2=V, @ (1-— a%o))@Lsg), s e Ty, xp, (3.53)

izl(l—aﬁo))
Tyl = opu® (1 —0op)zn, Yn >0,
where Tp,x,, := {%xn oy W}Hw(li) :117(5) c ﬂxn} and {o,} and {ag)}n fori = 1,2,...,m are
sequences satisfying the following conditions:
(C1) {on} C (0,1) such that limy, oo 0, =0 and > > oy = 00;
(C2) {ag)}n C (0,1) such that0 < n < ag) <pu<1,foralli=0,1,2,...,m,and Y ;" oz,(f) =1.

The sequence {x,,} converges strongly to Pyu.

4. ILLUSTRATIVE EXAMPLE

Example 4.1. Let X = D = R™ (m > 2) be endowed with the metric d defined by

m

d(z,y) = | @1+ U3 —y1 — 23)° + Y (@i — v:)?,
1=2

forall x = (x1,22,...,2m) € R™and y = (y1,y2,---,Ym) € R™. It follows from Example 3.2 of
Salisu et al. [39] that (R™, d) is a flat CAT(0) space and
(I—txdty:= (z1+t(y1 —x1) —t(1 —t)(y2 — 22)%, (1 —t)xa + tya, ..., (1 —t)zm + tYm)
(4.1)

forallt € [0, 1].
For any two positive real numbers 31, 2, consider f defined by

flu,w) = —51(u§ —uy) (u% —up +wy — w%) + B9 Z:m(@tzZ — u;).
i=2

It can be shown that f satisfies all the required conditions (A1)-(A4). In fact, ifamap ¢ : X — X is
defined by

o(z) = (61(2), $2(2), ..., o (),

where ¢;(z) = ﬁlﬁ_ b2 x5,V je{2,3,---,m}and ¢1(x) = (p2(x))*. Then it is easy to see that
1
flu,w) == =P (u3 —u1) (U3 — w1 + w1 — w3) + Bo Zui(wi — ;)
=2
=5 (—(u% —up) (U3 — u1 4wy —w3) + z:(uZ — ¢i(u))(w; — uz)>
=2

1

= 51( (w1 —w3)” + 3" (i(w) —w)? — (1 — wr +wy —wd)® =3 (u; —w;)?
=2 3
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m

— (uj — U1)2 - Z (ui — ¢i(u))2)

i=2
= B[ (6w, w) = d(u,w) - d(u, §(u)|.
Since (X, d) is a flat CAT(0) spaces, then it follows that for all z,y, z € X and for all ¢ € [0, 1],
Ptr® (1 —1t)y,2) =td*(z,2) + (1 — t)d*(y, 2) — t(1 — t)d*(z,y).

Consequently, we have

ﬁllf(u,ta: & (1 tyy) = d2(Su), tr @ (1 — t)y) — d®(u,tz & (1 — t)y) — d(u, d(u))

= td*($(u), x) + (1 = )d*(p(u), y) — td*(u, z)
— (1= t)d*(u,y) — d*(u, d(u))

—t(d2<¢<u>,> d2<u z) = d*(u, (u)))
= (@ (6(u), y) — () — d*(u, 6(w)))
t ( t)
,81 flu,z) + 3, f(u,y).

This guarantees that, for any u € X, f(u, -) is convex. Moreover,

fl@y) + fy,2) = —Bu(23 — 1) (23 — 21 + 91 — 43) + Bo Zwi(yi — ;)

=2

—Bilys —w) (3 —vn + 21— 25) + B2 Y wilzi — i)

=2

= —pi(x3 —21) (v —z1+ 21 — 23) + Bo Zﬂcz‘(zi — i)

1=2
m
— B3 —21) (55 — 21+ 01 — 43) + Be Zwi(yi — z;)
=2
m
— By =) (15 —yi + 21— 23) + B2 > vilzi — i)

i=2
= f(z,2) — A (96%—£E1+y1—y§) (23—21+y1—y§)

m
— B2 Y (i — i) (2 — i)
=2
> f(z,2) = Bi|a3 —z1+y1 — 93] |25 — 21+ 1 — v

m
— B2 > |y — il - |z — il

=2
> f(z,2) - % (@1 +45 =y —23)* + (g1 + 25 — 21 — 43)°)
- % Z (i = 9i)* + (yi — 2)°)
=2
> fla,2) - DO oy ) BB o )
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max{f, B2}

This implies that f is Lipschitz-type continuous (satisfies condition (A3)), withr; = rs = — e
In addition, suppose that f(u,w) > 0. It follows that

m
(u3 —w) (43 —ur +wi — w3) < 22 Y " wi(wi —w).
Consequently, we obtain

flw,u) = —Br(ws —wr) (w§ —wy +uy —ud) + B2 > wi(u; — w;)
i=2

m
2
= =B (w5 —wi +ur —u3)” + Bui(ur —u) (wh — wi +ug —u3) + B2 Y wilu; —w;)
1=2

m
< Br(ur —u3) (w3 — wi +ug —u3) + o Y wilu; — w;)
=2

< Bo Y wilwi —ug) + B2 Y wiluy —w) = —Fa Y (u; —w;)* <0.
i=2 i=2 i=2

Therefore, f is pseudomonotone. Moreover, by its definition, f is continuous in both variables, and
thus all the required conditions for f are satisfied. Additionally, the zero vector is an equilibrium point
of f. In fact, it follows from the definition of ¢ and Proposition 5.1 in Salisu et al. [38] that the zero
vector is the unique equilibrium point.

For 3; > 1, consider the mapping T} defined by Tyx = (T} (x), T?(x),. .., T/™(z)) where

(Bi = 1)(1 —25;)* n (1- 5i)2> 2
Bi Bi 2

THe) = (1= i +
T?(x) = 2(1 — B;)x2, and
T/ (z) = [(1 = Bi)xj — Bilzj|, (1= Bi)wy), forall j€{3,4,...,m}.

It is not difficult to see that 7; is not nonexpansive mapping for 5; > 1. To see this, take x =
(x1,22,...,2m) and y = (y1,Y2,...,Ym) such that z; = 0, for all j € {1,2,...,m} and y; =
0,y2 =0and y; > 0forall j € {3,...,m}. Then,

Ha(Tp 2, Ts.y) :max{ sup dist(a, T y), sup dist(b, Tgix)}
aETéix bETBiy

= sup dist(b, T x) = sup d(b,0)
bETBiy ¢ bETBiy

= |1 - 28]

> lyil? = 28 = Vd(z,y) > d(x,y).
=3

However, T} is 3;-enriched multivalued nonexpansive mapping with B; = fB; — 1. To show this, we
proceed as follows:

TBi(x) = {ﬁlﬂ_ 1x + ;y TRS T(ac)} = (Tﬁli(ac),Tgi(x), .. .,Tg?(a:)),
where )
Tli(gg) = (1_52&)5537 Tﬁzl(x) 1 _'Bixg, and Téﬁ(:p) = [—]|z;|, 0],

7
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for all j € {3,4,...,m}. Consequently, for |z| > |y|, we have Téi(y) = [y l,0] C [—|z;|,0] =

Tj(x), forall j € {3,4,...,m}, and hence

2
2
<Hd(T5,:c,T5,y)) =maxq sup dist(a, T3 y), sup dist(b,T5 x)
v ¢ aETBix ! beTy y '

7

2
= | sup dist(a, T} y)
aETBix ‘

5‘_1 2 m m
g( : ) 2+ sup Sy — i < 3 Jes — sl < dPa,y).

bi ocls,w j=3 i=2

Therefore, T is a f;-enriched multivalued nonexpansive mapping with B; = B; — 1. Moreover, the zero
vector is a common fixed point of all 7 and hence it is the unique solution to the problem (1.4).
Given (z,w) € R™ x R™ and A > 0, consider the proximal point

yp = axgmin|f(w,y) + (2, y)]

yeR™
and let
1
Then
O(y) = — Br(wh —wi)(wh — w1 +y1 — 45) + ﬁzzwi(yi — w;)
i=2
i 2 [ 2\2 - 02
+ 3\ (361 Ty~ 352) "‘Z(% Yi)|-
j=2

For j > 3,

T — Y .
Oyj<I>:62wj— J/\ ] =0 = yj::L‘j—)\ﬂgwj (]:3,...,m).

For j = 1, we have

1
0y, ® = —Bl(w% —wy) — X (:El +y§ —n —JE%) =0 = y1=x —i—y% —x% +)\51(w§ —wy).
For j = 2, we have
T2 — Y2

Oy, ® = Bows — 5

=0= y2 = 22 — AMws.
S0

y1 = x1 — 2APowexs + )\2,6’2211)% + AB1 (wg — wl).
Therefore, the proximal point has the following coordinates:

1 =21 — 2\Bowams + N2B3w3 + Ay (w% — wl),

(4.2)
y; = xj — A\Pawyj, 71=2,3,....,m.

It is worth noting that (4.1) guarantees the explicit forms of z,, and z,1. Moreover, if we define
Hx,w,\) = (y1,Y2, .., Ym) such that (yj);nzl is given in (4.2), then w,, = ¥(zy, Tp, \n) and y, =
VT, Wny An)-
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1 Oz(i)— 1
n+1" 1
2+ <1 - 2m+1>

m min {27{1, 23“2 } For the bifunction f we take 51 = 4 and $5 = 5, while each
mapping 77 is evaluated with the parameter 5; = 2j. We consider the dimensional case m = 50 and
execute the algorithm seven times independently, thereby evaluating its performance under random
initialization. The starting point ¢ is drawn from the standard normal distribution, xy = randn(m, 1),
and the anchor u is drawn from the uniform distribution on [0, 1], u = rand(m, 1). The resulting
distances d(z,,, z*) after the first iteration are reported in Table 1, illustrating the decay of the iterates
toward the desired solution.

For the numerical experiments carried out in MATLAB, we fix 0, =

and \,, =

TaBLE 1. Distance d(z, z*) for seven random runs with m = 50

n d(xp, x*)

1 | 1.651975452 1.948757545 1.527989272 1.881156755 2.389654289 1.771456347 1.694820001
2 10.246932124 0.269043728 0.213642559 0.265567686 0.343225893 0.257747551 0.252326145
3 10.030833838 0.030866826 0.022230082 0.027549939 0.036036357 0.027155539 0.028389222
4 | 0.003186077 0.002981635 0.001843239 0.002298367 0.00301318 0.002277666 0.002566412
5 | 0.000270592 0.00024104 0.000127058 0.000160654 0.000209758 0.000159097 0.000193161
6 1.92E-05 1.65E-05 7.49E-06 9.65E-06 1.25E-05 9.52E-06 1.24E-05
7 1.16E-06 9.69E-07 3.86E-07 5.08E-07 6.53E-07 4.99E-07 6.93E-07
8 6.12E-08 4.98E-08 1.77E-08 2.38E-08 3.03E-08 2.32E-08 3.42E-08
9 2.85E-09 2.28E-09 7.26E-10 1.00E-09 1.26E-09 9.71E-10 1.50E-09
10 1.19E-10 9.39E-11 2.71E-11 3.85E-11 4.80E-11 3.70E-11 5.98E-11
11 4.47E-12 3.52E-12 9.28E-13 1.35E-12 1.67E-12 1.29E-12 2.16E-12
12 1.54E-13 1.20E-13 2.93E-14 4.39E-14 5.35E-14 4.15E-14 7.18E-14
13 4.85E-15 3.80E-15 8.56E-16 1.32E-15 1.60E-15 1.24E-15 2.20E-15
14 1.42E-16 1.11E-16 2.34E-17 3.71E-17 4.44E-17 3.45E-17 6.26E-17
15 3.84E-18 3.02E-18 5.98E-19 9.76E-19 1.16E-18 9.02E-19 1.66E-18
16 9.74E-20 7.69E-20 1.44E-20 2.42E-20 2.84E-20 2.22E-20 4.13E-20
17 2.31E-21 1.84E-21 3.27E-22 5.66E-22 6.59E-22 5.14E-22 9.66E-22
18 5.18E-23 4.14E-23 7.05E-24 1.25E-23 1.45E-23 1.13E-23 2.13E-23
19 1.09E-24 8.80E-25 1.45E-25 2.64E-25 3.02E-25 2.36E-25 4.43E-25
20 2.18E-26 1.77E-26 2.82E-27 5.28E-27 6.00E-27 4.69E-27 8.76E-27
21 4.14E-28 3.39E-28 5.27E-29 1.01E-28 1.14E-28 8.90E-29 1.64E-28
22 7.46E-30 6.18E-30 9.41E-31 1.85E-30 2.06E-30 1.61E-30 2.94E-30
23 1.28E-31 1.07E-31 1.61E-32 3.24E-32 3.59E-32 2.81E-32 5.01E-32
24 2.11E-33 1.78E-33 2.66E-34 5.44E-34 5.99E-34 4.69E-34 8.15E-34
25 3.31E-35 2.84E-35 4.23E-36 8.80E-36 9.62E-36 7.53E-36 1.27E-35
26 4.98E-37 4.33E-37 6.48E-38 1.37E-37 1.49E-37 1.16E-37 1.90E-37
27 7.21E-39 6.34E-39 9.58E-40 2.06E-39 2.22E-39 1.73E-39 2.74E-39
28 1.01E-40 8.95E-41 1.37E-41 2.98E-41 3.19E-41 2.50E-41 3.79E-41
29 1.35E-42 1.22E-42 1.90E-43 4.18E-43 4.44E-43 3.48E-43 5.06E-43
30 1.77E-44 1.60E-44 2.55E-45 5.66E-45 5.98E-45 4.68E-45 6.55E-45

5. CONCLUSION

In this paper, we have successfully introduced and studied a new Halpern extragradient-type algo-
rithm in the setting of Hadamard spaces. Also, we established and proved convergence theorem for
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solving combined equilibrium and fixed point problems involving finite family of enriched multivalued
nonexpansive mappings. Moreover, the developed algorithm has been shown to converge strongly,
which improves and generalizes some of the recently announced results in the literature.

STATEMENTS AND DECLARATIONS

The authors declare that they have no conflict of interest, and the manuscript has no associated data.

(1]

(10]
(11]
(12]
(13]
(14]
(15]
(16]
(17]
(18]

(19]
(20]

REFERENCES

M. Abbas, R. Anjum, and V. Berinde. Enriched multivalued contractions with applications to differential inclusions and
dynamic programming. Symmetry, 13(8):Article ID 1350, 2021.

M. Abbas, S. H. Khan, A. R. Khan, and R. P. Agarwal. Common fixed points of two multivalued nonexpansive mappings
by one-step iterative scheme. Applied Mathematics Letters, 24(2):97-102, 2011.

A. Abkar and M. Eslamian. Common fixed point results in CAT(0) spaces. Nonlinear Analysis: Theory, Methods & Ap-
plications, 74(5):1835-1840, 2011.

R. L. Adler, J.-P. Dedieu, J. Y. Margulies, M. Martens, and M. Shub. Newton’s method on Riemannian manifolds and a
geometric model for the human spine. IMA Journal of Numerical Analysis, 22(3):359-390, 2002.

B. Ali, M. H. Harbau, and A. A. Alasan. A modified Halpern extragradient method for equilibrium and fixed point
problems in CAT(0) space. Creative Mathematics and Informatics, 31(1):1-16, 2022.

K. O. Aremu, L. O. Jolaoso, and O. K. Oyewole. A self-adaptive extragradient method for fixed-point and pseudomonotone
equilibrium problems in Hadamard spaces. Fixed Point Theory and Algorithms for Sciences and Engineering, 2023:Article
ID 4, 2023.

V. Berinde. Approximating fixed points of enriched nonexpansive mappings in Banach spaces by using a retraction-
displacement condition. Carpathian Journal of Mathematics, 36(1):27-34, 2020.

V. Berinde and M. Pacurar. Approximating fixed points of enriched contractions in Banach spaces. Journal of Fixed Point
Theory and Applications, 22:Article ID 38, 2020.

E. Blum and W. Oettli. From optimization and variational inequalities to equilibrium problems. The Mathematics Student,
63(1-4):123-145, 1994.

J. X. Da Cruz Neto, O. P. Ferreira, L. R. L. Pérez, and S. Z. Németh. Convex- and monotone-transformable mathematical
programming problems and a proximal-like point method. Journal of Global Optimization, 35(1):53-69, 2006.

S. Dhompongsa, T. Dominguez Benavides, A. Kaewcharoen, and B. Panyanak. Fixed point theorems for multivalued
mappings in modular function spaces. Scientiae Mathematicae Japonicae, 63(2):139-147, 2006.

S. Dhompongsa, A. Kaewkhao, and B. Panyanak. Lim’s theorems for multivalued mappings in CAT(0) spaces. Journal of
Mathematical Analysis and Applications, 312(2):478-487, 2005.

S. Dhompongsa, A. Kaewkhao, and B. Panyanak. On Kirk’s strong convergence theorem for multivalued nonexpansive
mappings on CAT(0) spaces. Nonlinear Analysis: Theory, Methods & Applications, 75(2):459-468, 2012.

S. Dhompongsa, W. A. Kirk, and B. Panyanak. Nonexpansive set-valued mappings in metric and Banach spaces. Journal
of Nonlinear and Convex Analysis, 8(1):35-45, 2007.

S. Dhompongsa and B. Panyanak. On A-convergence theorems in CAT(0) spaces. Computers & Mathematics with Ap-
plications, 56(10):2572-2579, 2008.

D. Downing and W. A. Kirk. Fixed point theorems for set-valued mappings in metric and Banach spaces. Mathematica
Japonica, 22(1):99-112, 1977.

S. Eilenberg and D. Montgomery. Fixed point theorems for multi-valued transformations. American Journal of Mathe-
matics, 68:214-222, 1946.

K. Fan. A minimax inequality and applications. In O. Shisha, editor, Inequalities III, pages 103-113. Academic Press, San
Diego, 1972.

A. Granas and J. Dugundji. Fixed Point Theory. Springer Monographs in Mathematics. Springer-Verlag, New York, 2003.
H. liduka and I. Yamada. A subgradient-type method for the equilibrium problem over the fixed point set and its appli-
cations. Optimization, 58(2):251-261, 2009.

S. Itoh and W. Takahashi. The common fixed point theory of singlevalued mappings and multivalued mappings. Pacific
Journal of Mathematics, 79(2):493-508, 1978.

A. N.Iusem and V. Mohebbi. Convergence analysis of the extragradient method for equilibrium problems in Hadamard
spaces. Computational & Applied Mathematics, 39(2):Article ID 44, 2020.

H. Khatibzadeh and V. Mohebbi. Approximating solutions of equilibrium problems in Hadamard spaces. Miskolc Math-
ematical Notes, 20(1):281-297, 2019.



(24]
(25]
[26]
(27]
(28]
(29]

(30]

ITERATIVE ALGORITHM FOR A COMMON SOLUTION OF EQUILIBRIUM AND FIXED POINT PROBLEMS 237

H. Khatibzadeh and V. Mohebbi. Monotone and pseudo-monotone equilibrium problems in Hadamard spaces. Journal
of the Australian Mathematical Society, 110(2):220-242, 2021.

W. A. Kirk. Geodesic geometry and fixed point theory. In Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003),
volume 64 of Colecc. Abierta, pages 195-225. Universidad de Sevilla Secretaria de Publicaciones, Seville, 2003.

W. A. Kirk and B. Panyanak. A concept of convergence in geodesic spaces. Nonlinear Analysis: Theory, Methods & Appli-
cations, 68(12):3689-3696, 2008.

G. M. Korpelevich. An extragradient method for finding saddle points and for other problems. Ekonomika i Matematich-
eskie Metody, 12(4):747-756, 1976.

W. Laowang and B. Panyanak. Strong and A convergence theorems for multivalued mappings in CAT(0) spaces. Journal
of Inequalities and Applications, 2009:Article ID 730132, 2009.

T. C. Lim. A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach space. Bulletin
of the American Mathematical Society, 80:1123-1126, 1974.

P.-E. Maingeé. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimiza-
tion. Set-Valued Analysis, 16(7-8):899-912, 2008.

[31] J. T. Markin. Continuous dependence of fixed point sets. Proceedings of the American Mathematical Society, 38:545-547,

(32]
(33]

(34]

(45]

(46]

1973.

B. Martinet. Régularisation d’inéquations variationnelles par approximations successives. Revue Frangaise
d’Automatique, Informatique, Recherche Opérationnelle, 4:154-158, 1970.

M. S. Minjibir and S. Salisu. Strong and A-convergence theorems for a countable family of multi-valued demicontractive
maps in hadamard spaces. Nonlinear Functional Analysis and Applications, 27:45-58, 2022.

R. Moharami and G. Z. Eskandani. An extragradient algorithm for solving equilibrium problem and zero point problem in
Hadamard spaces. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 114(3):Article
ID 152, 2020.

S. B. Nadler Jr. Multi-valued contraction mappings. Notices of the American Mathematical Society, 14:Article ID 930, 1967.

] S. B. Nadler Jr. Multi-valued contraction mappings. Pacific Journal of Mathematics, 30:475-488, 1969.
] R. L. Plunkett. A fixed point theorem for continuous multi-valued transformations. Proceedings of the American Mathe-

matical Society, 7:160—-163, 1956.

S. Salisu, V. Berinde, S. Sriwongsa, and P. Kumam. Approximating fixed points of demicontractive mappings in metric
spaces by geodesic averaged perturbation techniques. AIMS Mathematics, 8(12):28582-28600, 2023.

S. Salisu, V. Berinde, S. Sriwongsa, and P. Kumam. On approximating fixed points of strictly pseudocontractive mappings
in metric spaces. Carpathian Journal of Mathematics, 40(2):419-430, 2024.

S. Salisu, P. Kumam, S. Sriwongsa, and J. Abubakar. On minimization and fixed point problems in Hadamard spaces.
Computational & Applied Mathematics, 41:Article ID 117, 2022.

S. Salisu, P. Kumam, S. Sriwongsa, and A. Y. Inuwa. Enriched multi-valued nonexpansive mappings in geodesic spaces.
Rendiconti del Circolo Matematico di Palermo. Second Series, 73(4):1435-1451, 2024.

S. Salisu and M. S. Minjibir. Iterative algorithms for common fixed points of a countable family of quasi-nonexpansive
multivalued mappings in CAT(0) spaces. Mathematical Sciences, 18(4):681-692, 2024.

T. Shimizu and W. Takahashi. Fixed points of multivalued mappings in certain convex metric spaces. Topological Methods
in Nonlinear Analysis, 8(1):197-203, 1996.

S. T. Smith. Optimization techniques on Riemannian manifolds. In Hamiltonian and Gradient Flows, Algorithms and
Control, volume 3 of Fields Institute Communications, pages 113-136. American Mathematical Society, Providence, RI,
1994.

G. Stampacchia. Formes bilinéaires coercitives sur les ensembles convexes. Comptes Rendus de I’Académie des Sciences,
258:4413-4416, 1964.

W. L. Strother. On an open question concerning fixed points. Proceedings of the American Mathematical Society, 4:988—
993, 1953.

[47] J. Tang. Viscosity approximation methods for a family of nonexpansive mappings in CAT(0) spaces. Abstract and Applied

(48]
(49]
(50]

[51]

Analysis, 2014:Article ID 389804, 2014.

D. Q. Tran, M. L. Dung, and V. H. Nguyen. Extragradient algorithms extended to equilibrium problems. Optimization,
57(6):749-776, 2008.

N. H. Trinh. Contraction of the proximal mapping and applications to the equilibrium problem. Optimization, 66(3):381-
396, 2017.

L. E. Ward Jr. Characterization of the fixed point property for a class of set-valued mappings. Polska Akademia Nauk.
Fundamenta Mathematicae, 50:159-164, 1961.

H.-K. Xu. Iterative algorithms for nonlinear operators. Journal of the London Mathematical Society, 66(1):240-256, 2002.



	1. Introduction
	2. Preliminaries
	3. Main Results
	4. Illustrative Example
	5. Conclusion
	Statements and Declarations
	References

