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Abstract. In this paper, the problem of approximating an equilibrium point that is simultaneously a
fixed point of a finite family of multivalued enriched nonexpansive mappings in Hadamard spaces is
addressed. A new Halpern extragradient-type algorithm is proposed, and the sequence it generates is
proved to converge strongly to the desired common solution. With the aid of an illustrative example
presented in a non-Hilbert CAT(0) space, the implementation and performance of the proposed method
are demonstrarted in a setting beyond Hilbert spaces. The results obtained here refine and extend recent
contributions in the literature.
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1. Introduction

A metric space (X, d) is referred to as geodesic metric space if, for any two points x, y ∈ X , there
exists an isometry α̂ : [0, d(x, y)] → X such that:

α̂(0) = x, α̂(d(x, y)) = y, and d(α̂(t), α̂(s)) = |t− s|,

for all t, s ∈ [0, d(x, y)]. The range of α̂, denoted by α̂([0, d(x, y)]), is called a geodesic segment, and
it is denoted by [x, y] when α̂ is unique. We say that (X, d) is a unique geodesic space if, for each
pair of points x, y ∈ X , there is exactly one geodesic joining x to y. Moreover, for a unique geodesic
space (X, d), given x, y ∈ X , we denote a point z ∈ [x, y] by (1 − t)x ⊕ ty, if d(x, z) = td(x, y)
and d(y, z) = (1 − t)d(x, y) for some fixed t ∈ [0, 1]. More generally, for x1, x2, . . . , xn ∈ X and
t1, t2, . . . , tn ∈ (0, 1) satisfying

∑n
i=1 ti = 1, the convex combination

⊕n
i=1 tixi is defined recursively

by
m⊕
i=1

tixi := (1− tm)

(
m−1⊕
i=1

ti
1− tm

xi

)
⊕ tmxm, for m = 2, 3, . . . , n,

in accordance with Dhompongsa et al. [13] as well as Salisu and Minjibir [42]. A subsetD ofX is called
convex if for every pair of points x, y ∈ D we have (1− t)x⊕ ty ∈ D for all t ∈ [0, 1].
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A geodesic triangle △(x, y, z) in X consists of three points x, y, z ∈ X (the vertices of △) and three
geodesic segments connecting each pair of vertices (the edges of △). For a unique geodesic space, the
triangle is simply defined as:

△(x, y, z) := [x, y] ∪ [y, z] ∪ [z, x].

A comparison triangle for △(x, y, z) is a triangle △(x, y, z) in the Euclidean space (R2, d) such that:

d(x, y) = dR2(x, y), d(x, z) = dR2(x, z), d(y, z) = dR2(y, z).

A geodesic space (X, d) is said to be a CAT(0) space if, for every geodesic triangle △ and its correspond-
ing comparison triangle △, the following comparison axiom holds:

d(x, y) ≤ dR2(x, y), ∀x, y ∈ △ and ∀x, y ∈ △.

A complete CAT(0) space is referred to as a Hadamard space. It is well-known that, given a nonempty
closed, convex subset D of a CAT(0) space (X, d), for each x ∈ X , there exists a unique ux ∈ D such
that d(x, ux) ≤ d(x, u) for all u ∈ D. The map x 7→ ux for x ∈ X and ux ∈ D is called the metric
projection of X onto D denoted PD .

Let {xn} be a bounded sequence in a metric space (X, d). For x ∈ X , we define

r(x, {xn}) := lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is then defined as

r({xn}) = inf
x∈X

r(x, {xn}).

The asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})} .

Remark 1.1. It is known (see, e.g., Dhompongsa and Panyanak [15]) that in a Hadamard space,A({xn})
is a singleton for every bounded sequence {xn}.

A bounded sequence {xn} in a metric space (X, d) is said to delta converge to a point x ∈ X if

lim sup
k→∞

d(xnk
, x) ≤ lim sup

k→∞
d(xnk

, y)

for every subsequence {xnk
} of {xn} and for every y ∈ X . In other words, x is the unique asymptotic

center for every subsequence {xnk
} of {xn}. In this case, we write ∆ limn→∞ xn = x, and call x the

∆-limit of {xn}. We say that {xn} converges strongly to a point x ∈ X if it converges in the usual sense,
that is, limn→∞ d(xn, x) = 0. In this case, we write limn→∞ xn = x, and call x the limit of {xn}.

Remark 1.2. If {xn} and {wn} are two bounded sequences in X such that limn→∞ d(xn, wn) = 0 and
∆ limn→∞ xn = x, then ∆ limn→∞wn = x.

In what follows, unless otherwise stated,D is a nonempty closed convex subset of a Hadamard space
(X, d). We denote the family of nonempty closed bounded subsets of D by CB(D), and dist(b, A)
denotes the distance from b ∈ X to a subset A of X , i.e.,

dist(b, A) := inf
a∈A

d(b, a), ∀b ∈ X.

The Hausdorff metric is denoted by Hd, that is, Hd : CB(D)× CB(D) → R defined by

Hd(A,B) := max

{
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)
}
, ∀A,B ∈ CB(D).

We recall that a map T : D → CB(X) is called nonexpansive if Hd(Tx, Ty) ≤ d(x, y), ∀x, y ∈ D.
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Definition 1.3. (Salisu et al. [41]) Let (X, d) be a CAT (0) space, and let T : D → CB(X) be a
multivalued mapping. For θ ≥ 0, define a multivalued mapping Tθ by

Tθx =

{
θ

θ + 1
x⊕ 1

θ + 1
y : y ∈ Tx

}
.

Then T is said to be an enriched multivalued nonexpansive (or θ-enriched multivalued nonexpansive)
mapping if, for some θ ≥ 0,

Hd(Tθx, Tθy) ≤ d(x, y), ∀x, y ∈ D.

It follows directly from Definition 1.3 that every multivalued nonexpansive mapping is a 0-enriched
multivalued nonexpansive mapping.

We say that a multivalued mapping T : D → CB(D) has the demiclosedness-type property at x if,
whenever ∆ limn→∞ xn = x and limn→∞ dist(xn, Txn) = 0, it follows that x ∈ Tx. It follows from
Theorem 4.2 of Salisu et al. [41] that any enriched multivalued nonexpansive mapping T with compact
images satisfies the demiclosedness-type property.

Definition 1.4. Let (X, d) be a geodesic metric space. The function f : D(f) ⊂ X → R∪{∞} is said
to be:

(i) convex, if
f((1− t)x⊕ ty) ≤ (1− t)f(x) + tf(y) ∀x, y ∈ X, t ∈ (0, 1);

(ii) strongly convex with parameter k > 0, if
f((1− t)x⊕ ty) ≤ (1− t)f(x) + tf(y)− kt(1− t)d2(x, y) ∀x, y ∈ X, t ∈ (0, 1);

(iii) lower semicontinuous (lsc) (or upper semicontinuous (usc)) at a point x ∈ D(f), if
f(x) ≤ lim inf

n→∞
f(xn) (or f(x) ≥ lim sup

n→∞
f(xn)),

for each sequence {xn} ⊂ D(f) such that limn→∞ xn = x. We say that f is lsc (or usc) on
D(f) if it is lsc (or usc) at every point in D(f).

An equilibrium problem (EP) is the problem of finding p∗ ∈ D such that:
f(p∗, y) ≥ 0, ∀y ∈ D (1.1)

where f : D × D → R is a bifunction, and D is a nonempty convex subset of a CAT(0) space
X . We denote the set of solutions of (1.1) by EP (f,D). EP was first introduced in finite-dimensional
spaces by Stampacchia [45] in the 1960s in the context of variational inequalities, and was subsequently
developed by Fan [18], Blum and Oettli [9], among others. Stampacchia’s foundational work laid the
groundwork for various EP formulations, which are now central in nonlinear analysis, economics, and
optimization theory. The EP framework unifies numerous problems, including minimization problems,
variational inequalities, and Nash equilibrium problems, all of which have broad applications. For
instance, if f(x, y) = φ(y) − φ(x) for a real-valued function φ, then problem (1.1) reduces to the
classical minimization problem min

x∈D
φ(x). In this case, a point p∗ solves (1.1) if and only if p∗ is a

minimizer of φ over D.
For a nonempty subset D of X , a fixed point of a multivalued mapping T : D → 2D is a point

p∗ ∈ D such that p∗ ∈ T (p∗). We denote the set of all fixed points of T by F (T ), that is,
F (T ) := {p∗ ∈ D : p∗ ∈ Tp∗} .

Fixed point theory of multivalued mappings has been developed early on by such authors as ( Eilenberg
and Montgomery [17], Strother [46], Plunkett [37], Ward [50], Nadler [35, 36], Markin [31]). In partic-
ular, Markin [31] (in 1973) investigated multivalued contraction maps via the Hausdorff metric. Since
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then, the theory has attracted considerable interest (see, e.g., Abbas et al. [2], Dhompongsa et al. [11],
Dawning and Kirk [16], Granas and Dugundji [19], Itoh and Takahashi [21], Shimizu and Takahashi
[43], Lim[29]) due to its wide applicability in game theory, differential equations, optimization, and
related fields.

To approximate solutions to (1.1), various techniques have been developed and studied in Banach
spaces as well as Hadamard spaces. One such method is the use of proximal point algorithm introduced
by Martinet [32] in the setting of Hilbert spaces, which was also used by Khatibzadeh and Mohebbi [24]
to investigate the existence and approximation of solutions of EP in Hadamard spaces. Another well-
known method is the Extragradient Algorithm, introduced by Korpelevich [27], which was utilized by
Trans et al. [48] to establish weak convergence of the sequence generated by their algorithm to a point in
EP (f,D) in the setting of Hilbert spaces. Khatibzadeh and Mohebbi [23] studied EP and reformulated
Trans’s algorithm [48] in the setting of Hadamard spaces. They proved that the sequence generated
by the algorithm ∆-converges to p∗ ∈ EP (f,D). In further efforts, they incorporated Halpern-type
iteration to obtain strong convergence.

The advantage of considering geodesic spaces, particularly CAT(0) spaces, lies in their flexibility re-
garding convexity, monotonicity, and constraint handling. For instance, certain functions may be con-
vex in the geodesic sense but not in the classical Euclidean sense. Similarly, a mapping that is monotone
in a geodesic space may not remain monotone when interpreted in a Hilbert space; see, e.g., Da Cruz
Neto et al. [10]. Moreover, optimization problems that are constrained in a Hilbert space framework
may become unconstrained when reformulated in an appropriate geodesic setting. However, these
implications are generally not reversible. Typical examples include eigenvalue optimization problems
Smith [44] and geometric models of the human spine Adler et al. [4], where the geometry plays a
central role in reformulating the problem. These and other geometric features make CAT(0) spaces a
rich and powerful setting for studying fixed point theory and convex optimization. In the context of
fixed point theory, the work of Kirk [25] was among the first to exploit the geometry of CAT(0) spaces.
This initiated a trend of developments in fixed point results for both singlevalued and multivalued map-
pings in CAT(0) spaces (see, e.g., Abkar and Eslamian [3], Dhompongsa et al. [12], Dhompongsa and
Panyanak[15], Laowang and Panyanak [28], Minjibir and Salisu [33], Salisu and Minjibir [42]).

Building on this development in the study of fixed points of multivalued mappings, Abbas et al. [1]
considered the notion of enriched nonexpansive mappings, as introduced in Berinde and Pacurar [8]
and Berinde [7], and extended this concept to multivalued settings in Hilbert spaces. Subsequently,
Salisu et al. [41] introduced and studied the multivalued versions of enriched nonexpansive mappings
in geodesic spaces. They analyzed the fixed points of these mappings in CAT(0) spaces and established
that a sequence generated by a Krasnoselkii-Mann iterative scheme ∆-converges to a fixed point of the
underlying mapping.

On the other hand, certain phenomena lead to an equilibrium point that is simultaneously a fixed
point of a certain mapping. This implies that the equilibrium problem must be utilized in conjunction
with fixed point problems to address the original problem (see, e.g., Iiduka and Yamada [20] and Trinh
[49]). Based on this, many researchers focus on common solutions of equilibrium and fixed points
of certain mappings. For instance, Aremu et al. [6] addressed the computational cost and time con-
sumption of the problem associated with the linesearch strategy introduced by Iusem and Mohebbi
[22], which was developed to solve EP with pseudomonotone bifunctions in Hadamard spaces. They
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proposed the following self-adaptive extragradient algorithm in Hadamard spaces:

x0, u ∈ D,

yn ∈ Argmin
y∈D

[
f(xn, y) +

1
2λn

d2(xn, y)
]
,

wn ∈ Argmin
y∈D

[
f(yn, y) +

1
2λn

d2(xn, y)
]
,

xn+1 = αnu⊕ (1− αn)[βnhn ⊕ (1− βn)wn],

λn+1 =


min

{
λn,

µ[d2(xn,yn)+d2(wn,yn)]
2[f(xn,wn)−f(xn,yn)−f(yn,wn)]

}
,

iff(xn, wn)− f(xn, yn)− f(yn, wn) > 0,

λ0, otherwise,

(1.2)

where hn ∈ Twn and λn+1 is the adaptive parameter. They established that the sequence {xn} gener-
ated by the algorithm (1.2) converges strongly to a common solution of problem (1.1) and fixed point
problems for a multivalued nonexpansive mapping.

In 2022, Ali et al. [5] used Halpern-extragradient algorithms to approximate common solutions of EP
and fixed point problems for a finite family of bifunctions and nonexpansive mappings, respectively.
They proved that the sequence {xn} generated by the following algorithm converges strongly to a
common solution of the problems:

u, x1 ∈ X chosen arbitrarily,
zin = argmin

y∈D
{fi(xn, y) + 1

2λn
d2(y, xn), i = 1, 2, 3, · · · , N},

yin = argmin
y∈D

{fi(zin, y) + 1
2λn

d2(y, xn), i = 1, 2, 3, · · · , N},

in = argmax{d2(yin, xn), i = 1, 2, 3, · · · , N}, yn = yinn ,

wn = γn,0yn
⊕m

j=1 γn,jTjxn,

xn+1 = βnu⊕ (1− βn)wn, n ≥ 1.

(1.3)

The purpose of this work is to to provide iterative algorithms for approximating a common solution
of EP and fixed point problems for certain classes of nonexpansive mappings in Hadamard spaces.
Specifically, this work builds on the approaches of Khatibzadeh and Mohebbi [23] and Salisu et al. [41]
to propose an iterative algorithm for approximating a solution of an equilibrium problem that is also
a fixed point of a finite family of multivalued enriched nonexpansive mappings in Hadamard spaces.
This method incorporates the extragradient technique, which is known for faster convergence, and the
Halpern technique to ensure the strong convergence of the generated sequence. The method specifically
seeks to approximate p∗ ∈ D such thatf(p

∗, y) ≥ 0, ∀y ∈ D;

p∗ ∈
m
∩
i=1
Tip

∗,
(1.4)

where f : D × D → R is a bifunction and Ti : D → 2D is multivalued enriched nonexpansive
mappings, for each i = 1, 2, . . . ,m for some m ∈ N, D ⊂ X , where (X, d) is a Hadamard space.

2. Preliminaries

In this section we collect some lemmas that are necessary for the main results of the paper.

Lemma 2.1 (Dhompongsa and Panyanak [15]). Let (X, d) be a CAT(0) space, with x, y, z ∈ X and
t ∈ [0, 1]. Then

(i) d(tx⊕ (1− t)y, z) ≤ td(x, z) + (1− t)d(y, z);
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(ii) d2(tx⊕ (1− t)y, z) ≤ td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y).

Lemma 2.2 (Tang [47]). Let (X, d) be a CAT(0) space. Let {xi, i = 1, 2, . . . ,m} ⊂ X and αi ∈ [0, 1]
for i = 1, 2, . . . ,m, such that

∑m
i=1 αi = 1. Then,

d

(
m⊕
i=1

αixi, z

)
≤

m∑
i=1

αid(xi, z), ∀z ∈ X.

Lemma 2.3 (Dhompongsa et al. [14]). If {xn} is a bounded sequence in a closed and convex subset D of
a Hadamard space, then the asymptotic center of {xn} is in D.

Lemma 2.4 (Kirk and Panyanak [26]). Every bounded sequence in a Hadamard space has a ∆-convergent
subsequence.

Lemma 2.5 (Dhompongsa et al.[14]). If {xn} is a bounded sequence in a Hadamard space (X, d) with
A({xn}) = {x}, and {un} is a subsequence of {xn} with A({un}) = {u}, and the sequence {d(xn, u)}
converges, then x = u.

Lemma 2.6 (Salisu et al. [41]). Let (X, d) be a Hadamard space and T : D → CB(X) be a mapping.
For θ ≥ 0, let Tθ be as in Definition 1.3. Then F (Tθ) = F (T ).

Lemma 2.7 (Salisu et al. [41]). Let T : D → CB(X) be a θ-enriched multivalued nonexpansive mapping.
Suppose that F (T ) ̸= ∅ and Tp∗ = {p∗} for p∗ ∈ F (T ). Then, the set F (T ) is closed and convex.

For a bifunction f : D ×D → R, consider the following assumptions:
(A1) f(x, ·) : D → R is convex and lower semicontinuous (lsc) for all x ∈ D;
(A2) f(·, y) : D → R is upper semicontinuous (∆-usc) for all y ∈ D, i.e., if x0, y ∈ D, then

f(x0, y) ≥ lim sup
n→∞

f(xn, y),

for every sequence {xn} ⊂ D satisfying ∆ limn→∞ xn = x0;
(A3) f is Lipschitz-type continuous, i.e., there exist r1, r2 > 0 such that

f(x, y) + f(y, z) ≥ f(x, z)− r1d
2(x, y)− r2d

2(y, z), ∀x, y, z ∈ D;

(A4) f is pseudomonotone, i.e., if f(x, y) ≥ 0, then f(y, x) ≤ 0, for all x, y ∈ D.

Lemma 2.8 (Moharami and Eskandani [34]). If a bifunction f satisfies conditions (A1), (A2), and (A4),
then EP (f,D) is closed and convex.

Lemma 2.9 (Xu [51]). Let {an} be a sequence of non-negative real numbers satisfying

an+1 ≤ (1− αn)an + αnδn + γn, n ≥ 0,

where {αn}, {δn}, and {γn} satisfy the following conditions:
(i) {αn} ⊂ [0, 1] and

∑∞
n=0 αn = ∞;

(ii) lim sup δn ≤ 0;
(iii) γn ≥ 0 and

∑∞
n=0 γn <∞.

Then, limn→∞ an = 0.

Lemma 2.10 (Mainge [30]). Let {an} be a sequence in R such that there exists a subsequence {anj} of
{an} with anj < anj+1, for all j ∈ N. Then, there exists a non-decreasing sequence {τ(n)} such that
limn→∞ τ(n) = ∞, and for some n ≥ n0,

aτ(n) ≤ aτ(n)+1 and an ≤ aτ(n)+1, n0 ∈ N.

In particular, τ(n) := max{i ≤ n : ai < ai+1}.
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3. Main Results

In this section, we state and prove the main results of this paper. Let the set of solutions of (1.4) be
denoted by Φ, i.e.,

Φ :=
m
∩
i=1
F (Ti) ∩ EP (f,D).

Form ∈ N, letTi : D → CB(D) be a θi-enriched multivalued nonexpansive for each i ∈ {1, 2, . . . ,m}
and f : D ×D → R be a bifunction satisfying (A1)− (A4). Choose u, x0 ∈ D and define a sequence
{xn} iteratively by 

wn = argmin
y∈D

[
f(xn, y) +

1
2λn

d2(xn, y)
]
,

yn = argmin
y∈D

[
f(wn, y) +

1
2λn

d2(xn, y)
]
,

zn = α
(0)
n yn ⊕ (1− α

(0)
n )

m⊕
i=1

α
(i)
n

(1−α
(0)
n )

s
(i)
n , s

(i)
n ∈ Tθiyn,

xn+1 = σnu⊕ (1− σn)zn, ∀n ≥ 0,

(3.1)

where Tθiyn :=
{

θi
θi+1yn ⊕ 1

θi+1v
(i)
n : v

(i)
n ∈ Tiyn

}
, {σn}, {λn} and {α(i)

n }n i = 1, 2, . . . ,m are se-
quences satisfying the following conditions:

(C1) {σn} ⊂ (0, 1) such that lim
n→∞

σn = 0 and
∑∞

n=0 σn = ∞;

(C2) {α(i)
n }n ⊂ (0, 1) such that 0 < η ≤ α

(i)
n ≤ µ < 1, ∀i = 0, 1, 2, . . . ,m and

∑m
i=0 α

(i)
n = 1;

(C3) 0 < a ≤ λn ≤ b < min{ 1
2r1
, 1
2r2

} and lim inf
n→∞

(1− 2rjλn) > 0, for j = 1, 2 and ∀n ≥ 0.

It is worth noting that for any x, y ∈ X, the function ψ := f(x, ·) + d2(y, ·) is strongly convex, as
it is the sum of a convex and a strongly convex function. Consequently, ψ has a unique minimizer.
Therefore, yn and wn are well-defined, which guarantees that algorithm (3.1) is well-defined.

Lemma 3.1. Let (X, d) be a Hadamard space, and let D be a nonempty closed convex subset of X . For
each i = 1, 2, . . . ,m (m ∈ N), let Ti : D → CB(D) be a family of θi-enriched multivalued nonexpansive
mappings, and let f : D × D → R be a bifunction satisfying assumptions (A1) − (A4). Let {xn}
be a sequence generated by Algorithm (3.1). Suppose Φ ̸= ∅ and Tip∗ = {p∗} for all p∗ ∈ Φ and
i ∈ {1, 2, . . . ,m}. Then, the sequences {xn}, {zn}, and {yn} are all bounded.

Proof. From the assumption on Φ, Theorem 2.7, and Lemma 2.8, we have that Φ is nonempty, closed,
and convex. Let p∗ ∈ Φ. For any t ∈ [0, 1), consider ŷn = tyn ⊕ (1 − t)p∗. Then, by condition (A1)
and Lemma 2.1(ii), we have

f(wn, yn) +
1

2λn
d2(xn, yn) ≤ f(wn, ŷn) +

1

2λn
d2(xn, ŷn)

≤ tf(wn, yn) + (1− t)f(wn, p
∗) +

1

2λn

(
td2(xn, yn)

+ (1− t)d2(xn, p
∗)− t(1− t)d2(yn, p

∗)
)
. (3.2)

Since f(p∗, wn) ≥ 0, pseudomonoticity of f implies that f(wn, p
∗) ≤ 0. Hence, (3.2) gives

(1− t)f(wn, yn) ≤
1

2λn

(
(1− t)d2(xn, p

∗)− (1− t)d2(xn, yn)− t(1− t)d2(yn, p
∗)
]
.

This implies

f(wn, yn) ≤
1

2λn

(
d2(xn, p

∗)− d2(xn, yn)− td2(yn, p
∗)
)
.
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By allowing t→ 1− we have

f(wn, yn) ≤
1

2λn

(
d2(xn, p

∗)− d2(xn, yn)− d2(yn, p
∗)
)
. (3.3)

Similarly, setting v̂n = twn ⊕ (1 − t)yn, for any t ∈ [0, 1), by definition of wn in algorithm 3.1,
assumption (A1) and Lemma 2.1(ii) yield

f(xn, wn) +
1

2λn
d2(xn, wn) ≤ f(xn, v̂n) +

1

2λn
d2(xn, v̂n)

≤ tf(xn, wn) + (1− t)f(xn, yn) +
1

2λn
(td2(xn, wn)

+ (1− t)d2(xn, yn)− t(1− t)d2(wn, yn)). (3.4)

This implies

f(xn, wn)− f(xn, yn) ≤
1

2λn
[d2(xn, yn)− d2(xn, wn)− td2(wn, yn)].

By setting t→ 1−, we obtain

f(xn, wn)− f(xn, yn) ≤
1

2λn
[d2(xn, yn)− d2(xn, wn)− d2(wn, yn)]. (3.5)

Since f satisfies (A3) there exist r1, r2 > 0 such that

−r1d2(xn, wn)− r2d
2(wn, yn) + f(xn, yn)− f(xn, wn) ≤ f(wn, yn). (3.6)

From (3.5) and (3.6), we have

−r1d2(xn, wn)− r2d
2(wn, yn)−

1

2λn
[d2(xn, yn)− d2(xn, wn)− d2(wn, yn)] ≤ f(wn, yn),

which implies(
1

2λn
− r1

)
d2(xn, wn) +

(
1

2λn
− r2

)
d2(wn, yn)−

1

2λn
d2(xn, yn) ≤ f(wn, yn). (3.7)

From (3.3) and (3.7), we have(
1

2λn
− r1

)
d2(xn, wn) +

(
1

2λn
− r2

)
d2(wn, yn)−

1

2λn
d2(xn, yn)

≤ 1

2λn
[d2(xn, p

∗)− d2(xn, yn)− d2(yn, p
∗)].

Therefore,

(1− 2r1λn)d
2(xn, wn) + (1− 2r2λn)d

2(wn, yn) ≤ d2(xn, p
∗)− d2(yn, p

∗). (3.8)

From (C3), this gives

d2(yn, p
∗) ≤ d2(xn, p

∗). (3.9)
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Using (3.9), Lemma 2.1(i), Lemma 2.2, condition (C2), and the fact that Ti is a θi-enriched multivalued
nonexpansive mapping for each i ∈ {1, 2, . . . ,m}, we have

d(zn, p
∗) ≤ α(0)

n d(yn, p
∗) + (1− α(0)

n )d

(
m⊕
i=1

α
(i)
n

(1− α
(0)
n )

s(i)n , p∗

)

≤ α(0)
n d(yn, p

∗) + (1− α(0)
n )

m∑
i=1

α
(i)
n

(1− α
(0)
n )

d(s(i)n , p∗)

= α(0)
n d(yn, p

∗) +
m∑
i=1

α(i)
n dist(s(i)n , Tθip

∗)

≤ α(0)
n d(yn, p

∗) +
m∑
i=1

α(i)
n Hd(Tθiyn, Tθip

∗)

≤ d(yn, p
∗)

≤ d(xn, p
∗).

Therefore,

d(zn, p
∗) ≤ d(xn, p

∗). (3.10)

On the other hand, using Lemma 2.1(i) and (3.10), we obtain

d(xn+1, p
∗) = d(σnu⊕ (1− σn)zn, p

∗)

≤ σnd(u, p
∗) + (1− σn)d(zn, p

∗)

≤ σnd(u, p
∗) + (1− σn)d(xn, p

∗)

≤ max{d(u, p∗), d(xn, p∗)}
...
≤ max{d(u, p∗), d(x0, p∗)},

for all n ≥ 1. This implies that {xn} is bounded. Consequently, by (3.9) and (3.10), {zn} and {yn} are
all bounded. □

We now state and prove the main convergence theorem of algorithm (3.1).

Theorem 3.2. Let X , D, Ti, and f be as in Lemma 3.1. Suppose Φ ̸= ∅, Ti has demiclosedness-type
property and Tip∗ = {p∗} for all p∗ and i ∈ {1, 2, . . . ,m}. Then, the sequence {xn} generated by (3.1)
converges strongly to PΦu.

Proof. Let p∗ = PΦu. We split the proof into two separate cases:
Case I: Suppose that {d(xn, p∗)} is eventually a monotone non-increasing sequence, i.e., {d(xn, p∗)}
is monotone non-increasing for n ≥ n0, for some fixed n0 ∈ N. Then, limn→∞ d(xn, p

∗) exists in R,
and

lim
n→∞

[
d2(xn+1, p

∗)− d2(xn, p
∗)
]
= 0. (3.11)
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Step (i): We claim that lim
n→∞

d(xn, wn) = lim
n→∞

d(wn, yn) = lim
n→∞

d(xn, yn) = 0. To establish the claim,
we utilize (3.10), Lemma 2.1(ii) and the condition (C1) to obtain

lim
n→∞

[
d2(σnu⊕ (1− σn)zn, p

∗)− d2(xn, p
∗)
]

≤ lim inf
n→∞

[
σnd

2(u, p∗) + (1− σn)d
2(zn, p

∗)− σn(1− σn)d
2(u, zn)− d2(xn, p

∗)
]

≤ lim inf
n→∞

[
σnd

2(u, p∗) + (1− σn)d
2(zn, p

∗)− d2(xn, p
∗)
]

= lim
n→∞

σn
[
d2(u, p∗)− d2(zn, p

∗)
]
+ lim inf

n→∞

[
d2(zn, p

∗)− d2(xn, p
∗)
]

= lim inf
n→∞

[
d2(zn, p

∗)− d2(xn, p
∗)
]

≤ lim sup
n→∞

[
d2(zn, p

∗)− d2(xn, p
∗)
]

≤ 0.

Therefore, using (3.11), we have

lim
n→∞

[
d2(zn, p

∗)− d2(xn, p
∗)
]
= 0. (3.12)

Adopting the idea of Salisu et al. [40], let l(n)k :=
k⊕

i=1

α
(i)
n

γ
(n)
k

s
(i)
n ,

where γ(n)k :=
k∑

i=1
α
(i)
n , k ∈ {1, 2, . . . ,m}, n ∈ N.

Then, γ(n)k ∈ (0, 1),
γ
(n)
k−1

γ
(n)
k

≥ α
(1)
n , l

(n)
k =

γ
(n)
k−1

γ
(n)
k

l
(n)
k−1 ⊕ α

(k)
n

γ
(n)
k

s
(k)
n , for k = 2, 3, . . . ,m, γ(n)1 = α1

n and

l
(n)
1 = s

(1)
n . By Lemma 2.1(ii), we have the following estimate

d2(l
(n)
k , p∗) = d2

(
γ
(n)
k−1

γ
(n)
k

l
(n)
k−1 ⊕

α
(k)
n

γ
(n)
k

s(k)n , p∗

)

≤
γ
(n)
k−1

γ
(n)
k

d2(l
(n)
k−1, p

∗) +
α
(k)
n

γ
(n)
k

d2(s(k)n , p∗)−
γ
(n)
k−1

γ
(n)
k

α
(k)
n

γ
(n)
k

d2(l
(n)
k−1, s

(k)
n )

=
1

γ
(n)
k

[
γ
(n)
k−1d

2(l
(n)
k−1, p

∗) + α(k)
n d2(s(k)n , p∗)−

γ
(n)
k−1

γ
(n)
k

α(k)
n d2(l

(n)
k−1, s

(k)
n )

]

≤ 1

γ
(n)
k

[
γ
(n)
k−1d

2(l
(n)
k−1, p

∗) + α(k)
n d2(s(k)n , p∗)− α(1)

n α(k)
n d2(l

(n)
k−1, s

(k)
n )
]
.

Thus,

d2(l(n)m , p∗) ≤ 1

γ
(n)
m

[
γ
(n)
m−1d

2(l
(n)
m−1, p

∗) + α(m)
n d2(s(m)

n , p∗)− α(1)
n α(m)

n d2(l
(n)
m−1, s

(m)
n )

]
=

1

γ
(n)
m

[γ
(n)
m−1d

2

(
γ
(n)
m−2

γ
(n)
m−1

l
(n)
m−2 ⊕

α
(m−1)
n

γ
(n)
m−1

s(m−1)
n , p∗

)
+ α(m)

n d2(s(m)
n , p∗)

− α(1)
n α(m)

n d2(l
(n)
m−1, s

(m)
n )]

≤ 1

γ
(n)
m

[γ
(n)
m−2d

2(l
(n)
m−2, p

∗) + α(m−1)
n d2(s(m−1)

n , p∗) + α(m)
n d2(s(m)

n , p∗)

−
γ
(n)
m−2

γ
(n)
m−1

α(m−1)
n d2(l

(n)
m−2, s

(m−1)
n )− α(1)

n α(m)
n d2(l

(n)
m−1, s

(m)
n )]
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≤ 1

γ
(n)
m

[γ
(n)
m−2d

2(l
(n)
m−2, p

∗) + α(m−1)
n d2(s(m−1)

n , p∗) + α(m)
n d2(s(m)

n , p∗)

− α(1)
n α(m−1)

n d2(l
(n)
m−2, s

(m−1)
n )− α(1)

n α(m)
n d2(l

(n)
m−1, s

(m)
n )]

=
1

γ
(n)
m

[γ
(n)
m−2d

2(l
(n)
m−2, p

∗) +
m∑

i=m−1

α(i)
n d2(s(i)n , p∗)−

m∑
i=m−1

α(1)
n α(i)

n d2(l
(n)
i−1, s

(i)
n )]

≤ 1

γ
(n)
m

[γ
(n)
m−3d

2(l
(n)
m−3, p

∗) + α(m−2)
n d2(s(m−2)

n , p∗) +
m∑

i=m−1

α(i)
n d2(s(i)n , p∗)

− α(1)
n α(m−2)

n d2(l
(n)
m−3, s

(m−2)
n )−

m∑
i=m−1

α(1)
n α(i)

n d2(l
(n)
i−1, s

(i)
n )]

=
1

γ
(n)
m

[γ
(n)
m−3d

2(l
(n)
m−3, p

∗) +
m∑

i=m−2

α(i)
n d2(s(i)n , p∗)−

m∑
i=m−2

α(1)
n α(i)

n d2(l
(n)
i−1, s

(i)
n )]

...

≤ 1

γ
(n)
m

[
γ
(n)
1 d2(l

(n)
1 , p∗) +

m∑
i=2

α(i)
n d2(s(i)n , p∗)−

m∑
i=2

α(1)
n α(i)

n d2(l
(n)
i−1, s

(i)
n )

]

=
1

γ
(n)
m

[
m∑
i=1

α(i)
n d2(s(i)n , p∗)−

m∑
i=2

α(1)
n α(i)

n d2(l
(n)
i−1, s

(i)
n )

]

=
1

γ
(n)
m

[
m∑
i=1

α(i)
n dist2(s(i)n , Tθip

∗)−
m∑
i=2

α(1)
n α(i)

n d2(l
(n)
i−1, s

(i)
n )

]

≤ 1

γ
(n)
m

[
m∑
i=1

α(i)
n H2

d(Tθiyn, Tθip
∗)−

m∑
i=2

α(1)
n α(i)

n d2(l
(n)
i−1, s

(i)
n )

]

≤ 1

γ
(n)
m

[
m∑
i=1

α(i)
n d2(yn, p

∗)−
m∑
i=2

α(1)
n α(i)

n d2(l
(n)
i−1, s

(i)
n )

]

= d2(yn, p
∗)− 1

γ
(n)
m

m∑
i=2

α(1)
n α(i)

n d2(l
(n)
i−1, s

(i)
n ).

Therefore,

d2(l(n)m , p∗) ≤ d2(yn, p
∗)− 1

γ
(n)
m

m∑
i=2

α(1)
n α(i)

n d2(l
(n)
i−1, s

(i)
n ). (3.13)

It follows from (3.9), Lemma 2.1(ii), (3.13) and condition (C2) that

0 = lim
n→∞

[
d2
(
α(0)
n yn ⊕ γ(n)m l(n)m , p∗

)
− d2(xn, p

∗)
]

≤ lim inf
n→∞

[α(0)
n d2 (yn, p

∗) + γ(n)m d2(l(n)m , p∗)− α(0)
n γ(n)m d2(yn, l

(n)
m )− d2(xn, p

∗)]

≤ lim inf
n→∞

[α(0)
n d2 (yn, p

∗) + γ(n)m

(
d2(yn, p

∗)− 1

γ
(n)
m

m∑
i=2

α(1)
n α(i)

n d2(l
(n)
i−1, s

(i)
n )

)
− α(0)

n γ(n)m d2(yn, l
(n)
m )− d2(xn, p

∗)]

≤ lim inf
n→∞

[α(0)
n d2 (yn, p

∗) + γ(n)m d2(yn, p
∗)− d2(xn, p

∗)].
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Since

lim inf
n→∞

[α(0)
n d2 (yn, p

∗) + γ(n)m d2(yn, p
∗)− d2(xn, p

∗)] = lim inf
n→∞

[
d2 (yn, p

∗)− d2(xn, p
∗)
]

= lim sup
n→∞

[
d2 (yn, p

∗)− d2(xn, p
∗)
]

≤ 0,

we obtain
lim
n→∞

[
d2 (yn, p

∗)− d2(xn, p
∗)
]
= 0. (3.14)

On other hand, from (3.8) and (3.14), we have

lim inf
n→∞

[
(1− 2r1λn)d

2(xn, wn) + (1− 2r2λn)d
2(wn, yn)

]
≤ lim sup

n→∞

[
(1− 2r1λn)d

2(xn, wn) + (1− 2r2λn)d
2(wn, yn)

]
≤ lim

n→∞

[
d2(xn, p

∗)− d2(yn, p
∗)
]

= 0.

The fact that (1 − 2r1λn)d
2(xn, wn) + (1 − 2r2λn)d

2(wn, yn) ≥ 0 (from condition (C3)) and the
foregoing inequality yield

lim
n→∞

[
(1− 2r1λn)d

2(xn, wn) + (1− 2r2λn)d
2(wn, yn)

]
= 0,

which implies that

lim
n→∞

(1− 2r1λn)d
2(xn, wn) = 0 and lim

n→∞
(1− 2r2λn)d

2(wn, yn) = 0.

By condition (C3), we obtain

lim
n→∞

d2(xn, wn) = 0 and lim
n→∞

d2(wn, yn) = 0.

Consequently,
lim
n→∞

d(xn, wn) = 0 and lim
n→∞

d(wn, yn) = 0.

We also note that
d(xn, yn) ≤ d(xn, wn) + d(wn, yn) → 0 (n→ ∞).

Hence,
lim
n→∞

d(xn, wn) = lim
n→∞

d(wn, yn) = lim
n→∞

d(xn, yn) = 0. (3.15)

Step (ii): Next we show that lim
n→∞

dist(xn, Tθixn) = 0. By Lemma 2.1(ii), (3.13) and (3.9) we have

d2(zn, p
∗) = d2

(
α(0)
n yn ⊕ (1− α(0)

n )
m⊕
i=1

α
(i)
n

(1− α
(0)
n )

s(i)n , p∗

)
= d2

(
α(0)
n yn ⊕ γ(n)m l(n)m , p∗

)
≤ α(0)

n d2 (yn, p
∗) + γ(n)m d2(l(n)m , p∗)− α(0)

n γ(n)m d2(yn, l
(n)
m )

≤ α(0)
n d2 (yn, p

∗) + γ(n)m

[
d2(yn, p

∗)− 1

γ
(n)
m

m∑
i=2

α(1)
n α(i)

n d2(l
(n)
i−1, s

(i)
n )

]
− α(0)

n γ(n)m d2(yn, l
(n)
m )

= α(0)
n d2(yn, p

∗) + γ(n)m d2(yn, p
∗)−

m∑
i=2

α(1)
n α(i)

n d2(l
(n)
i−1, s

(i)
n )
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− α(0)
n γ(n)m d2(yn, l

(n)
m )

≤ d2(yn, p
∗)− α(0)

n α(m)
n d2(yn, l

(n)
m )−

m∑
i=2

α(1)
n α(i)

n d2(l
(n)
i−1, s

(i)
n )

≤ d2(xn, p
∗)− α(0)

n α(m)
n d2(yn, l

(n)
m )−

m∑
i=2

α(1)
n α(i)

n d2(l
(n)
i−1, s

(i)
n ).

Thus,

α(0)
n α(m)

n d2(yn, l
(n)
m ) +

m∑
i=2

α(1)
n α(i)

n d2(l
(n)
i−1, s

(i)
n ) ≤ d2(xn, p

∗)− d2(zn, p
∗).

So, using condition (C2) of algorithm (3.1), we get

η2d2(yn, l
(n)
m ) +

∑m
i=2 η

2d2(l
(n)
i−1, s

(i)
n ) ≤ d2(xn, p

∗)− d2(zn, p
∗),

which implies

d2(yn, l
(n)
m ) +

m∑
i=2

d2(l
(n)
i−1, s

(i)
n ) ≤ 1

η2
[d2(xn, p

∗)− d2(zn, p
∗)]. (3.16)

By (3.12), we obtain from (3.16) that

lim
n→∞

[
d2(yn, l

(n)
m ) +

m∑
i=2

d2(l
(n)
i−1, s

(i)
n )

]
= 0.

It follows that for each i ∈ {2, 3, . . . ,m},

lim
n→∞

d2(yn, l
(n)
m ) = 0 and lim

n→∞
d2(l

(n)
i−1, s

(i)
n ) = 0.

Consequently,
lim
n→∞

d(yn, l
(n)
m ) = 0 (3.17)

and
lim
n→∞

d(l
(n)
i−1, s

(i)
n ) = 0, for each i ∈ {2, 3, . . . ,m}. (3.18)

It follows from definition of ⊕ that
dist(yn, Tθ1yn) ≤ d(yn, s

(1)
n )

≤ d(s(1)n , l
(n)
2 ) + d(l

(n)
2 , l

(n)
3 ) + · · ·+ d(l

(n)
m−1, l

(n)
m ) + d(l(n)m , yn)

=
α
(2)
n

γ
(n)
2

d(s(1)n , s(2)n ) +
α
(3)
n

γ
(n)
3

d(l
(n)
2 , s(3)n ) + · · ·+ α

(m)
n

γ
(n)
m

d(l
(n)
m−1, s

(m)
n ) + d(l(n)m , yn)

≤ d(l
(n)
1 , s(2)n ) + d(l

(n)
2 , s(3)n ) + · · ·+ d(l

(n)
m−1, s

(m)
n ) + d(l(n)m , yn). (3.19)

Similarly, for each i ∈ {2, 3, . . . ,m},

dist(yn, Tθiyn) ≤ d(yn, s
(i)
n )

≤ d(s(i)n , l
(n)
i−1) + d(l

(n)
i−1, l

(n)
i ) + · · ·+ d(l

(n)
m−1, l

(n)
m ) + d(l(n)m , yn)

= d(s(i)n , l
(n)
i−1) +

α
(i)
n

γ
(n)
i

d(l
(n)
i−1, s

(i)
n ) + · · ·+ α

(m)
n

γ
(n)
m

d(l
(n)
m−1, s

(m)
n ) + d(l(n)m , yn)

≤ d(s(i)n , l
(n)
i−1) + d(l

(n)
i−1, s

(i)
n ) + · · ·+ d(l

(n)
m−1, s

(m)
n ) + d(l(n)m , yn). (3.20)

Therefore, from (3.17), (3.18), (3.19) and (3.20), we obtain
lim
n→∞

dist(yn, Tθiyn) = 0, ∀i = 1, 2, . . . ,m. (3.21)
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By taking infimum over g(i)n ∈ Tθixn, using d(xn, g(i)n ) ≤ d(xn, yn) + d(yn, s
(i)
n ) + d(s

(i)
n , g

(i)
n ) and the

fact that Tθi is nonexpansive, we have

dist(xn, Tθixn) ≤ d(xn, yn) + d(yn, s
(i)
n ) + dist(s(i)n , Tθixn)

≤ d(xn, yn) + d(yn, s
(i)
n ) +Hd(Tθiyn, Tθixn)

≤ 2d(xn, yn) + d(yn, s
(i)
n ). (3.22)

Also, taking infimum over s(i)n ∈ Tθiyn on (3.22), we have
dist(xn, Tθixn) ≤ 2d(xn, yn) + dist(yn, Tθ(i)yn). (3.23)

Using (3.15) and (3.21), we obtain from (3.23) that
lim
n→∞

dist(xn, Tθixn) = 0, for each i = 1, 2, . . . ,m. (3.24)

Step (iii): We show that, if {xnk
} is a subsequence of {xn} such that xnk

∆−→ q̂, then q̂ ∈ Φ. For this,
let {xnk

} be a subsequence of {xn} such that xnk

∆−→ q̂. From the demiclosedness-type property of
Ti, (3.24) and Lemma 2.6, we obtain

q̂ ∈
m
∩
i=1
F (Tθi) =

m
∩
i=1
F (Ti).

Next, we show q̂ ∈ EP (f,D). From (3.3), (3.7), (3.14), (3.15) and the fact that { 1
λn

} is bounded, we have
lim
n→∞

f(wn, yn) = 0. (3.25)

For each t ∈ [0, 1) and q ∈ D we have tyn ⊕ (1 − t)q ∈ D. By definition of yn in algorithm (3.1),
assumption (A1) and Lemma 2.1(ii), we have

f(wn, yn) +
1

2λn
d2(xn, yn) ≤ f(wn, tyn ⊕ (1− t)q) +

1

2λn
d2(xn, tyn ⊕ (1− t)q)

≤ tf(wn, yn) + (1− t)f(wn, q) +
1

2λn
[td2(xn, yn)

+ (1− t)d2(xn, q)− t(1− t)d2(yn, q)].

This implies

f(wn, yn)− f(wn, q) ≤
1

2λn

[
d2(xn, q)− d2(xn, yn)− td2(yn, q)

]
.

Letting t→ 1−, we have

f(wn, yn)− f(wn, q) ≤
1

2λn

[
d2(xn, q)− d2(xn, yn)− d2(yn, q)

]
,

which becomes
1

2λn

[
d2(xn, yn) + d2(yn, q)− d2(xn, q)

]
≤ f(wn, q)− f(wn, yn). (3.26)

It follows from (3.26) that

− 1

2λn
d(xn, yn) [d(xn, q) + d(yn, q)] ≤ f(wn, q)− f(wn, yn). (3.27)

By (3.15) and the fact that ∆ lim
k→∞

xnk
= q̂, and Remark 1.2, we obtain that ∆ lim

k→∞
wnk

= q̂. Using
(3.15), (3.25) and assumption (A2) we have, from (3.27), that

0 ≤ lim sup
k→∞

[f(wnk
, q)− f(wnk

, ynk
)]

≤ lim sup
k→∞

f(wnk
, q)
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≤ f(q̂, q), ∀q ∈ D.

This implies q̂ ∈ EP (f,D). Hence, q̂ ∈ Φ.
Step (iv) Finally we show that xn → p∗ as n→ ∞. By definition of xn+1, (3.10) and Lemma 2.1(ii), we
have for any p ∈ Φ,

d2(xn+1, p) ≤ σnd
2(u, p) + (1− σn)d

2(zn, p)− σn(1− σn)d
2(u, zn)

≤ (1− σn)d
2(xn, p) + σn

[
d2(u, p)− (1− σn)d

2(u, zn)
]
. (3.28)

From (3.28),

d2(xn+1, p
∗) ≤ (1− σn)d

2(xn, p
∗) + σn

[
d2(u, p∗)− (1− σn)d

2(u, zn)
]
. (3.29)

To show that d(xn, p∗) → 0, as n→ ∞, by Lemma 2.9, it is suffices to show that

lim sup
n→∞

[
d2(u, p∗)− (1− σn)d

2(u, zn)
]
≤ 0.

By triangular inequality, (3.15) and (3.17), we obtain

d(xn, l
(n)
m ) ≤ d(xn, yn) + d(yn, l

(n)
m ) → 0 as n→ ∞. (3.30)

Now, by definition of zn and Lemma 2.1(i) we have

d(xn, zn) = d

(
xn, α

(0)
n yn ⊕ (1− α(0)

n )
m⊕
i=1

α
(i)
n

(1− α
(0)
n )

s(i)n

)
= d

(
xn, α

(0)
n yn ⊕ γ(n)m l(n)m

)
≤ α(0)

n d(xn, yn) + γ(n)m d(xn, l
(n)
m ). (3.31)

Therefore, using (3.15) and (3.30), we get from (3.31)

lim
n→∞

d(xn, zn) = 0. (3.32)

Let {znk
} be a subsequence of {zn}. Since {xn} is bounded, so is {xnk

} and therefore there exists a
subsequence {xnkj

} of {xnk
} such that ∆ lim

j→∞
xnkj

= q̂, which in turn, by (3.32) and Remark 1.2, gives

∆ lim
j→∞

znkj
= q̂. Therefore, by ∆−lower semicontinuity of d2(u, ·), we have

lim sup
n→∞

[
d2(u, p∗)− (1− σn)d

2(u, zn)
]
= lim

k→∞

[
d2(u, p∗)− (1− σnk

)d2(u, znk
)
]

= lim
j→∞

[
d2(u, p∗)− (1− σnkj

)d2(u, znkj
)
]

≤ d2(u, p∗)− d2(u, q̂). (3.33)

Since p∗ = PΦu, then d2(u, p∗) ≤ d2(u, z), ∀z ∈ Φ. As q̂ ∈ Φ, we obtain

d2(u, p∗) ≤ d2(u, q̂). (3.34)

Thus, by (3.33) and (3.34), we get

lim sup
n→∞

[
d2(u, p∗)− (1− σn)d

2(u, zn)
]
≤ 0.

Hence, d(xn, p∗) → 0, i.e., xn → p∗ as n→ ∞.

Case II: Suppose that {d(xn, p∗)} is not eventually nonincreasing sequence, i.e., there exists a subse-
quence {d(xnk

, p∗)} of {d(xn, p∗)} such that

d(xnk
, p∗) ≤ d(xnk+1, p

∗), ∀k ∈ N.
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By Lemma 2.10, there exists a nondecreasing sequence {τ(n)} for n ≥ n0, satisfying τ(n) → ∞ as
n→ ∞ and the following estimate holds:

d(xτ(n), p
∗) ≤ d(xτ(n)+1, p

∗) and d(xn, p∗) ≤ d(xτ(n)+1, p
∗), (3.35)

where τ(n) = max{j ≤ n : d(xj , p
∗) < d(xj+1, p

∗)}. From algorithm (3.1), Lemma 2.1(ii) and the fact
that στ(n) → 0 (σn → 0 and τ(n) → ∞), we have

lim sup
n→∞

[
d2(xτ(n)+), p

∗)− d2(xτ(n), p
∗)
]

≤lim sup
n→∞

[
στ(n)d

2(u, p∗) + (1− στ(n))d
2(zτ(n), p

∗)− d2(xτ(n), p
∗)
]

≤lim sup
n→∞

[
στ(n)d

2(u, p∗) + (1− στ(n))d
2(xτ(n), p

∗)− d2(xτ(n), p
∗)
]

=lim sup
n→∞

στ(n)
[
d2(u, p∗)− d2(xτ(n), p

∗)
]

=0.

Thus, using (3.35) we get

lim
n→∞

[
d2(xτ(n)+1, p

∗)− d2(xτ(n), p
∗)
]
= 0. (3.36)

Following the same argument as in Case I, with n replaced by τ(n), we have:
• (3.12) holds, i.e.,

lim
n→∞

[
d2(zτ(n), p

∗)− d2(xτ(n), p
∗)
]
= 0; (3.37)

• (3.14) holds, i.e.,
lim
n→∞

[
d2(yτ(n), p

∗)− d2(xτ(n), p
∗)
]
= 0; (3.38)

• (3.15) holds using (3.38), i.e.,

lim
n→∞

d(xτ(n), wτ(n)) = lim
n→∞

d(wτ(n), yτ(n)) = lim
n→∞

d(xτ(n), yτ(n)) = 0. (3.39)

Also,
• (3.17) and (3.18) hold from (3.16) and (3.37), i.e.,

lim
n→∞

d(yτ(n), l
(τ(n))
m ) = 0, (3.40)

and
lim
n→∞

d(l
(τ(n))
i−1 , y

(i)
τ(n)) = 0, for i = 1, 2, . . . ,m. (3.41)

Similarly,
• (3.21) holds from (3.40) and (3.41), i.e.,

lim
n→∞

dist(yτ(n), Tθiyτ(n)) = 0, for i = 1, 2, . . . ,m; (3.42)

• (3.24) holds from (3.39) and (3.42), i.e.,

lim
n→∞

dist(xτ(n), Tθixτ(n)) = 0, for i = 1, 2, . . . ,m; (3.43)

and
• (3.25) holds from (3.38) and (3.39), i.e.,

lim
n→∞

f(wτ(n), yτ(n)) = 0. (3.44)
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From definition of xn+1 in algorithm (3.1), if n is replaced by τ(n), using Lemma 2.1(ii), we also get
from (3.29) that

d2(xτ(n)+1, p
∗) ≤ (1− στ(n))d

2(xτ(n), p
∗) + στ(n)

(
d2(u, p∗)− (1− στ(n))d

2(u, zτ(n))
)
. (3.45)

By (3.35), we have from (3.45) that

d2(xτ(n), p
∗) ≤ (1− στ(n))d

2(xτ(n), p
∗) + στ(n)

(
d2(u, p∗)− (1− στ(n))d

2(u, zτ(n))
)
.

This implies
d2(xτ(n), p

∗) ≤ d2(u, p∗)− (1− στ(n))d
2(u, zτ(n)). (3.46)

To show that lim
n→∞

d2(xτ(n), p
∗) = 0, it suffices to show that

lim sup
n→∞

(
d2(u, p∗)− (1− στ(n))d

2(u, zτ(n))
)
≤ 0.

Since (3.32) holds with n replaced by τ(n) from (3.39) and (3.40), i.e.,

lim
n→∞

d(xτ(n), zτ(n)) = 0, (3.47)

let {pn} be a subsequence of {zτ(n)} such that

lim sup
n→∞

[
d2(u, p∗)− (1− στ(n))d

2(u, zτ(n))
]
= lim

n→∞

[
d2(u, p∗)− (1− σ̃n)d

2(u, pn)
]
, (3.48)

where {σ̃n} is a subsequence of {σn} with the same index as {pn}. Let {x̂n} be a subsequence of
{xτ(n)} having the same index as {pn}. Since {xτ(n)} is bounded, it follows that {x̂n} is bounded, and
so, there exists a subsequence {q̂n} of {x̂n} such that ∆ lim

n→∞
q̂n = q̂. Let {p̂n} be a subsequence of

{pn} having the same index as {q̂n}. Then, by (3.47) and Remark 1.2 ∆ lim
n→∞

p̂n = q̂.
Therefore, by ∆−lower semicontinuity of d2(u, ·), we have

lim sup
n→∞

[
d2(u, p∗)− (1− στ(n))d

2(u, zτ(n))
]
= lim

k→∞

[
d2(u, p∗)− (1− σ̃n)d

2(u, pn)
]

= lim
n→∞

[
d2(u, p∗)− (1− σ̂n)d

2(u, p̂n)
]

≤ d2(u, p∗)− d2(u, q̂), (3.49)

where {σ̂n} is a subsequence of {σ̃n} with the same index as {q̂n}. Similar arguments as in Step(iii)
give q̂ ∈ Φ. Since p∗ = PΦu, it follows that

d2(u, p∗) ≤ d2(u, q̂).

Thus, by (3.49) we get

lim sup
n→∞

[
d2(u, p∗)− (1− στ(n))d

2(u, zτ(n))
]
≤ 0.

By the foregoing inequality, we obtain from (3.46) that

lim
n→∞

d2(xτ(n), p
∗) = 0. (3.50)

Moreover, by (3.35) d(xn, p∗) ≤ d(xτ(n)+1, p
∗). It follows from that (3.45) and (3.50)

lim
n→∞

d(xn, p
∗) = 0.

Hence, fromCase I andCase IIwe conclude that {xn} converges strongly to p∗ = PΦu. This completes
the proof. □

Consider the family of nonempty compact subsets of D, denoted by K(D). Then, the fact that any
enriched multivalued nonexpansive mapping T with compact images satisfies the demiclosedness-type
property, we obtain the following result.
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Corollary 3.3. Let (X, d) be a Hadamard space, and let D be a nonempty closed convex subset of X . For
each i = 1, 2, . . . ,m (m ∈ N), let Ti : D → K(D) be a family of θi-enriched multivalued nonexpansive
mappings, and let f : D ×D → R be a bifunction satisfying assumptions (A1)− (A4). Suppose Φ ̸= ∅
and Tip∗ = {p∗} for all p∗ ∈ Φ and i ∈ {1, 2, . . . ,m}. Then, the sequence {xn} generated by (3.1)
converges strongly to PΦu.

If m = 1, then we have the following result for approximating a common solution of equilibrium
and fixed point problems for the enriched multivalued nonexpansive mapping T :

Corollary 3.4. Let X , D, and f be as in Theorem 3.2. Let T : D → CB(D) be a θ-enriched multivalued
nonexpansive mapping that satisfies demiclosedness-type property. Suppose Φ ̸= ∅ and Tp∗ = {p∗}. Let
u, x0 ∈ D, and let {xn} be a sequence generated by

wn = argmin
y∈D

[
f(xn, y) +

1
2λn

d2(xn, y)
]
,

yn = argmin
y∈D

[
f(wn, y) +

1
2λn

d2(xn, y)
]
,

zn = αnyn ⊕ (1− αn)sn, sn ∈ Tθyn,

xn+1 = σnu⊕ (1− σn)zn, ∀n ≥ 0,

(3.51)

where Tθyn :=
{

θ
θ+1yn ⊕ 1

θ+1vn : vn ∈ Tyn

}
, and {σn}, {λn}, and {αn} are sequences satisfying the

following conditions:

(C1) {σn} ⊂ (0, 1) such that limn→∞ σn = 0 and
∑∞

n=0 σn = ∞;
(C2) {αn} ⊂ (0, 1) such that 0 < η ≤ αn ≤ µ < 1;
(C3) 0 < a ≤ λn ≤ b < min

{
1

2r1
, 1
2r2

}
and lim infn→∞(1− 2rjλn) > 0, for j = 1, 2 and ∀n ≥ 0.

Then, the sequence {xn} converges strongly to PΦu.

Considering the case when Tθiyn = Tiyn for each i = 1, 2, . . . ,m (m ∈ N), we have the following
corollary for approximating a common solution of equilibrium and fixed point problems for a finite
family of multivalued nonexpansive mappings Ti:

Corollary 3.5. Let X , D, and f be as in Theorem 3.2. For each i = 1, 2, . . . ,m, with some m ∈ N,
let Ti : D → CB(D) be a family of multivalued nonexpansive mappings that satisfy demiclosedness-

type property. Suppose Ω :=
m
∩
i=1
F (Ti) ∩ EP (f,D) ̸= ∅ and Tip∗ = {p∗} for all p∗ ∈ Ω, for each

i ∈ {1, 2, . . . ,m}. Then, for arbitrary u, x0 ∈ D, the sequence {xn} generated by

wn = argmin
y∈D

[
f(xn, y) +

1
2λn

d2(xn, y)
]
,

yn = argmin
y∈D

[
f(wn, y) +

1
2λn

d2(xn, y)
]
,

zn = α
(0)
n yn ⊕ (1− α

(0)
n )

m⊕
i=1

α
(i)
n

(1−α
(0)
n )

s
(i)
n , s

(i)
n ∈ Tiyn,

xn+1 = σnu⊕ (1− σn)zn, ∀n ≥ 0,

(3.52)

where {σn}, {λn}, and {α(i)
n }n for i = 1, 2, . . . ,m are sequences satisfying the following conditions:

(C1) {σn} ⊂ (0, 1) such that limn→∞ σn = 0 and
∑∞

n=0 σn = ∞;
(C2) {α(i)

n }n ⊂ (0, 1) such that 0 < η ≤ α
(i)
n ≤ µ < 1, for all i = 0, 1, 2, . . . ,m, and

∑m
i=0 α

(i)
n = 1;

(C3) 0 < a ≤ λn ≤ b < min
{

1
2r1
, 1
2r2

}
and lim infn→∞(1− 2rjλn) > 0, for j = 1, 2 and ∀n ≥ 0.

The sequence {xn} converges strongly to PΩu.
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Furthermore, if we set the equilibrium bifunction to be the zero map in algorithm (3.1), we get the
following corollary for approximating common fixed points for a finite family of enriched multivalued
nonexpansive mappings.

Corollary 3.6. Let X , D, and Ti be as in Theorem 3.2. Suppose Ψ :=
m
∩
i=1
F (Ti) ̸= ∅ and Tip∗ = {p∗}

for all p∗ and i ∈ {1, 2, . . . ,m}. Then, the sequence {xn} generated by
u, x0 ∈ D,

zn = α
(0)
n xn ⊕ (1− α

(0)
n )

m⊕
i=1

α
(i)
n

(1−α
(0)
n )

s
(i)
n , s

(i)
n ∈ Tθixn,

xn+1 = σnu⊕ (1− σn)zn, ∀n ≥ 0,

(3.53)

where Tθixn :=
{

θi
θi+1xn ⊕ 1

θi+1v
(i)
n : v

(i)
n ∈ Tixn

}
, and {σn} and {α(i)

n }n for i = 1, 2, . . . ,m are
sequences satisfying the following conditions:

(C1) {σn} ⊂ (0, 1) such that limn→∞ σn = 0 and
∑∞

n=0 σn = ∞;
(C2) {α(i)

n }n ⊂ (0, 1) such that 0 < η ≤ α
(i)
n ≤ µ < 1, for all i = 0, 1, 2, . . . ,m, and

∑m
i=0 α

(i)
n = 1.

The sequence {xn} converges strongly to PΨu.

4. Illustrative Example

Example 4.1. Let X = D = Rm (m ≥ 2) be endowed with the metric d defined by

d(x, y) =

√√√√(x1 + y22 − y1 − x22)
2 +

m∑
i=2

(xi − yi)2,

for all x = (x1, x2, . . . , xm) ∈ Rm and y = (y1, y2, . . . , ym) ∈ Rm. It follows from Example 3.2 of
Salisu et al. [39] that (Rm, d) is a flat CAT(0) space and

(1− t)x⊕ ty :=
(
x1 + t (y1 − x1)− t(1− t)(y2 − x2)

2, (1− t)x2 + ty2, . . . , (1− t)xm + tym
)

(4.1)

for all t ∈ [0, 1].
For any two positive real numbers β1, β2, consider f defined by

f(u,w) := −β1(u22 − u1)
(
u22 − u1 + w1 − w2

2

)
+ β2

m∑
i=2

ui(wi − ui).

It can be shown that f satisfies all the required conditions (A1)-(A4). In fact, if a map ϕ : X → X is
defined by

ϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕm(x)),

where ϕj(x) =
β1 − β2
β1

xj , ∀ j ∈ {2, 3, · · · ,m} and ϕ1(x) = (ϕ2(x))
2. Then it is easy to see that

f(u,w) := −β1(u22 − u1)
(
u22 − u1 + w1 − w2

2

)
+ β2

m∑
i=2

ui(wi − ui)

= β1

(
−(u22 − u1)

(
u22 − u1 + w1 − w2

2

)
+

m∑
i=2

(ui − ϕi(u))(wi − ui)

)

= β1

( (
w1 − w2

2

)2
+

m∑
i=2

(ϕi(u)− wi)
2 −

(
u22 − u1 + w1 − w2

2

)2 − m∑
i=2

(ui − wi)
2
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−
(
u22 − u1

)2 − m∑
i=2

(ui − ϕi(u))
2
)

= β1

[
d2(ϕ(u), w)− d2(u,w)− d2(u, ϕ(u))

]
.

Since (X, d) is a flat CAT(0) spaces, then it follows that for all x, y, z ∈ X and for all t ∈ [0, 1],

d2(tx⊕ (1− t)y, z) = td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y).

Consequently, we have
1

β1
f(u, tx⊕ (1− t)y) = d2(ϕ(u), tx⊕ (1− t)y)− d2(u, tx⊕ (1− t)y)− d2(u, ϕ(u))

= td2(ϕ(u), x) + (1− t)d2(ϕ(u), y)− td2(u, x)

− (1− t)d2(u, y)− d2(u, ϕ(u))

= t
(
d2(ϕ(u), x)− d2(u, x)− d2(u, ϕ(u))

)
+ (1− t)

(
d2(ϕ(u), y)− d2(u, y)− d2(u, ϕ(u))

)
=

t

β1
f(u, x) +

(1− t)

β1
f(u, y).

This guarantees that, for any u ∈ X, f(u, ·) is convex. Moreover,

f(x, y) + f(y, z) = −β1(x22 − x1)
(
x22 − x1 + y1 − y22

)
+ β2

m∑
i=2

xi(yi − xi)

− β1(y
2
2 − y1)

(
y22 − y1 + z1 − z22

)
+ β2

m∑
i=2

yi(zi − yi)

= −β1(x22 − x1)
(
x22 − x1 + z1 − z22

)
+ β2

m∑
i=2

xi(zi − yi)

− β1(x
2
2 − x1)

(
z22 − z1 + y1 − y22

)
+ β2

m∑
i=2

xi(yi − zi)

− β1(y
2
2 − y1)

(
y22 − y1 + z1 − z22

)
+ β2

m∑
i=2

yi(zi − yi)

= f(x, z)− β1
(
x22 − x1 + y1 − y22

) (
z22 − z1 + y1 − y22

)
− β2

m∑
i=2

(yi − xi)(zi − yi)

≥ f(x, z)− β1
∣∣x22 − x1 + y1 − y22

∣∣ · ∣∣z22 − z1 + y1 − y22
∣∣

− β2

m∑
i=2

|yi − xi| · |zi − yi|

≥ f(x, z)− β1
2

(
(x1 + y22 − y1 − x22)

2 + (y1 + z22 − z1 − y22)
2
)

− β2
2

m∑
i=2

(
(xi − yi)

2 + (yi − zi)
2
)

≥ f(x, z)− max{β1, β2}
2

d2(x, y)− max{β1, β2}
2

d2(y, z).
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This implies that f is Lipschitz-type continuous (satisfies condition (A3)), with r1 = r2 =
max{β1, β2}

2
.

In addition, suppose that f(u,w) ≥ 0. It follows that

(u22 − u1)
(
u22 − u1 + w1 − w2

2

)
≤ β2
β1

m∑
i=2

ui(wi − ui).

Consequently, we obtain

f(w, u) = −β1(w2
2 − w1)

(
w2
2 − w1 + u1 − u22

)
+ β2

m∑
i=2

wi(ui − wi)

= −β1
(
w2
2 − w1 + u1 − u22

)2
+ β1(u1 − u22)

(
w2
2 − w1 + u1 − u22

)
+ β2

m∑
i=2

wi(ui − wi)

≤ β1(u1 − u22)
(
w2
2 − w1 + u1 − u22

)
+ β2

m∑
i=2

wi(ui − wi)

≤ β2

m∑
i=2

ui(wi − ui) + β2

m∑
i=2

wi(ui − wi) = −β2
m∑
i=2

(ui − wi)
2 ≤ 0.

Therefore, f is pseudomonotone. Moreover, by its definition, f is continuous in both variables, and
thus all the required conditions for f are satisfied. Additionally, the zero vector is an equilibrium point
of f . In fact, it follows from the definition of ϕ and Proposition 5.1 in Salisu et al. [38] that the zero
vector is the unique equilibrium point.

For βi ≥ 1, consider the mapping Ti defined by Tix = (T 1
i (x), T

2
i (x), . . . , T

m
i (x)) where

T 1
i (x) = (1− βi)x1 +

(
(βi − 1)(1− 2βi)

2

βi
+

(1− βi)
2

βi

)
x22,

T 2
i (x) = 2(1− βi)x2, and

T j
i (x) = [(1− βi)xj − βi|xj |, (1− βi)xj ] , for all j ∈ {3, 4, . . . ,m}.

It is not difficult to see that Ti is not nonexpansive mapping for βi > 1. To see this, take x =
(x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) such that xj = 0, for all j ∈ {1, 2, . . . ,m} and y1 =
0, y2 = 0 and yj > 0 for all j ∈ {3, . . . ,m}. Then,

Hd(Tβ̃i
x, Tβ̃i

y) = max

{
sup

a∈Tβ̃i
x

dist(a, Tβ̃i
y), sup

b∈Tβ̃i
y

dist(b, Tβ̃i
x)

}
= sup

b∈Tβ̃i
y

dist(b, Tβ̃i
x) = sup

b∈Tβ̃i
y
d(b, 0)

= |1− 2βi|

√√√√ m∑
j=3

|yj |2 = (2βi − 1)d(x, y) > d(x, y).

However, Ti is β̃i-enriched multivalued nonexpansive mapping with β̃i = βi − 1. To show this, we
proceed as follows:

Tβ̃i
(x) :=

{
βi − 1

βi
x+

1

βi
y : y ∈ T (x)

}
= (T 1

βi
(x), T 2

βi
(x), . . . , Tm

βi
(x)),

where

T 1
βi
(x) =

(1− βi)
2

β2i
x22, T 2

βi
(x) =

1− βi
βi

x2, and T j
βi
(x) = [−|xj |, 0] ,
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for all j ∈ {3, 4, . . . ,m}. Consequently, for |x| ≥ |y|, we have T j
βi
(y) = [−|yj |, 0] ⊆ [−|xj |, 0] =

T j
β(x), for all j ∈ {3, 4, . . . ,m}, and hence

(
Hd(Tβ̃i

x, Tβ̃i
y)
)2

= max

{
sup

a∈Tβ̃i
x

dist(a, Tβ̃i
y), sup

b∈Tβ̃i
y

dist(b, Tβ̃i
x)

}2

=

(
sup

a∈Tβ̃i
x

dist(a, Tβ̃i
y)

)2

≤
(
βi − 1

βi

)2

|x2 − y2|2 + sup
a∈Tβ̃i

x

m∑
j=3

|aj − yj |2 ≤
m∑
j=2

|xj − yj |2 ≤ d2(x, y).

Therefore, Tj is a β̃i-enriched multivalued nonexpansive mapping with β̃i = βi−1. Moreover, the zero
vector is a common fixed point of all Tj and hence it is the unique solution to the problem (1.4).

Given (x,w) ∈ Rm × Rm and λ > 0, consider the proximal point

yp = argmin
y∈Rm

[
f(w, y) + 1

2λd
2(x, y)

]
and let

Φ(y) := f(w, y) +
1

2λ
d2(x, y).

Then

Φ(y) =− β1(w
2
2 − w1)

(
w2
2 − w1 + y1 − y22

)
+ β2

m∑
i=2

wi(yi − wi)

+
1

2λ

[(
x1 + y22 − y1 − x22

)2
+

m∑
j=2

(xj − yj)
2
]
.

For j ≥ 3,

∂yjΦ = β2wj −
xj − yj
λ

= 0 =⇒ yj = xj − λβ2wj (j = 3, . . . ,m).

For j = 1, we have

∂y1Φ = −β1(w2
2 − w1)−

1

λ

(
x1 + y22 − y1 − x22

)
= 0 =⇒ y1 = x1 + y22 − x22 + λβ1(w

2
2 − w1).

For j = 2, we have

∂y2Φ = β2w2 −
x2 − y2
λ

= 0 =⇒ y2 = x2 − λβ2w2.

so
y1 = x1 − 2λβ2w2x2 + λ2β22w

2
2 + λβ1

(
w2
2 − w1

)
.

Therefore, the proximal point has the following coordinates:y1 = x1 − 2λβ2w2x2 + λ2β22w
2
2 + λβ1

(
w2
2 − w1

)
,

yj = xj − λβ2wj , j = 2, 3, . . . ,m.
(4.2)

It is worth noting that (4.1) guarantees the explicit forms of zn and xn+1. Moreover, if we define
ϑ(x,w, λ) = (y1, y2, . . . , ym) such that (yj)mj=1 is given in (4.2), then wn = ϑ(xn, xn, λn) and yn =

ϑ(xn, wn, λn).
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For the numerical experiments carried out inMatlab, we fixσn =
1

n+ 1
,α(i)

n =
1

2j+1

(
1− 1

2m+1

)
and λn =

n

2(2n+ 1)
min

{
1

2r1
,
1

2r2

}
. For the bifunction f we take β1 = 4 and β2 = 5, while each

mapping Tj is evaluated with the parameter βj = 2j. We consider the dimensional case m = 50 and
execute the algorithm seven times independently, thereby evaluating its performance under random
initialization. The starting point x0 is drawn from the standard normal distribution, x0 = randn(m, 1),
and the anchor u is drawn from the uniform distribution on [0, 1], u = rand(m,1). The resulting
distances d(xn, x∗) after the first iteration are reported in Table 1, illustrating the decay of the iterates
toward the desired solution.

Table 1. Distance d(xn, x∗) for seven random runs with m = 50

n d(xn, x
∗)

1 1.651975452 1.948757545 1.527989272 1.881156755 2.389654289 1.771456347 1.694820001
2 0.246932124 0.269043728 0.213642559 0.265567686 0.343225893 0.257747551 0.252326145
3 0.030833838 0.030866826 0.022230082 0.027549939 0.036036357 0.027155539 0.028389222
4 0.003186077 0.002981635 0.001843239 0.002298367 0.00301318 0.002277666 0.002566412
5 0.000270592 0.00024104 0.000127058 0.000160654 0.000209758 0.000159097 0.000193161
6 1.92E-05 1.65E-05 7.49E-06 9.65E-06 1.25E-05 9.52E-06 1.24E-05
7 1.16E-06 9.69E-07 3.86E-07 5.08E-07 6.53E-07 4.99E-07 6.93E-07
8 6.12E-08 4.98E-08 1.77E-08 2.38E-08 3.03E-08 2.32E-08 3.42E-08
9 2.85E-09 2.28E-09 7.26E-10 1.00E-09 1.26E-09 9.71E-10 1.50E-09
10 1.19E-10 9.39E-11 2.71E-11 3.85E-11 4.80E-11 3.70E-11 5.98E-11
11 4.47E-12 3.52E-12 9.28E-13 1.35E-12 1.67E-12 1.29E-12 2.16E-12
12 1.54E-13 1.20E-13 2.93E-14 4.39E-14 5.35E-14 4.15E-14 7.18E-14
13 4.85E-15 3.80E-15 8.56E-16 1.32E-15 1.60E-15 1.24E-15 2.20E-15
14 1.42E-16 1.11E-16 2.34E-17 3.71E-17 4.44E-17 3.45E-17 6.26E-17
15 3.84E-18 3.02E-18 5.98E-19 9.76E-19 1.16E-18 9.02E-19 1.66E-18
16 9.74E-20 7.69E-20 1.44E-20 2.42E-20 2.84E-20 2.22E-20 4.13E-20
17 2.31E-21 1.84E-21 3.27E-22 5.66E-22 6.59E-22 5.14E-22 9.66E-22
18 5.18E-23 4.14E-23 7.05E-24 1.25E-23 1.45E-23 1.13E-23 2.13E-23
19 1.09E-24 8.80E-25 1.45E-25 2.64E-25 3.02E-25 2.36E-25 4.43E-25
20 2.18E-26 1.77E-26 2.82E-27 5.28E-27 6.00E-27 4.69E-27 8.76E-27
21 4.14E-28 3.39E-28 5.27E-29 1.01E-28 1.14E-28 8.90E-29 1.64E-28
22 7.46E-30 6.18E-30 9.41E-31 1.85E-30 2.06E-30 1.61E-30 2.94E-30
23 1.28E-31 1.07E-31 1.61E-32 3.24E-32 3.59E-32 2.81E-32 5.01E-32
24 2.11E-33 1.78E-33 2.66E-34 5.44E-34 5.99E-34 4.69E-34 8.15E-34
25 3.31E-35 2.84E-35 4.23E-36 8.80E-36 9.62E-36 7.53E-36 1.27E-35
26 4.98E-37 4.33E-37 6.48E-38 1.37E-37 1.49E-37 1.16E-37 1.90E-37
27 7.21E-39 6.34E-39 9.58E-40 2.06E-39 2.22E-39 1.73E-39 2.74E-39
28 1.01E-40 8.95E-41 1.37E-41 2.98E-41 3.19E-41 2.50E-41 3.79E-41
29 1.35E-42 1.22E-42 1.90E-43 4.18E-43 4.44E-43 3.48E-43 5.06E-43
30 1.77E-44 1.60E-44 2.55E-45 5.66E-45 5.98E-45 4.68E-45 6.55E-45

5. Conclusion

In this paper, we have successfully introduced and studied a new Halpern extragradient-type algo-
rithm in the setting of Hadamard spaces. Also, we established and proved convergence theorem for
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solving combined equilibrium and fixed point problems involving finite family of enriched multivalued
nonexpansive mappings. Moreover, the developed algorithm has been shown to converge strongly,
which improves and generalizes some of the recently announced results in the literature.
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