Fixed Point Methods and Optimization

Electronic ISSN: 3008-1548

DOI: 10.69829/fpmo

A projective double inertial Ishikawa forward-backward splitting algorithm for variational inclusion problems with application to osteoporosis prediction

Fixed Point Methods and Optimization, Volume 1, Issue 2, December 2024, Pages 88–100

WATCHARAPORN CHOLAMJIAK

School of Science, University of Phayao, Phayao 56000, Thailand

Abstract

This work introduces a projective double inertial Ishikawa forward-backward splitting algorithm for solving variational inclusion problems in Hilbert spaces. We establish a weak convergence theorem under suitable control conditions, ensuring the reliability of the proposed approach. Numerical experiments, including an example in an infinite-dimensional space, demonstrate the algorithm's efficiency and validate the theoretical results. Furthermore, our study shows the effectiveness of applying the proposed algorithm to osteoporosis prediction using a multi-layer ELM, with the 2-layer ELM configuration achieving the highest performance across all metrics (accuracy, precision, recall, and F1-score), underscoring its robustness and efficiency.


Cite this Article as

Watcharaporn Cholamjiak, A projective double inertial Ishikawa forward-backward splitting algorithm for variational inclusion problems with application to osteoporosis prediction, Fixed Point Methods and Optimization, 1(2), 88–100, 2024